UNIVERSITY OF CALCUTTA

Notification No. CSR/ 12 /18

It is notified for information of all concerned that the Syndicate in its meeting held on 28.05.2018 (vide Item No.14) approved the Syllabi of different subjects in Undergraduate Honours / General / Major courses of studies (CBCS) under this University, as laid down in the accompanying pamphlet:

List of the subjects

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Subject</th>
<th>Sl. No.</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anthropology (Honours / General)</td>
<td>29</td>
<td>Mathematics (Honours / General)</td>
</tr>
<tr>
<td>2</td>
<td>Arabic (Honours / General)</td>
<td>30</td>
<td>Microbiology (Honours / General)</td>
</tr>
<tr>
<td>3</td>
<td>Persian (Honours / General)</td>
<td>31</td>
<td>Mol. Biology (General)</td>
</tr>
<tr>
<td>4</td>
<td>Bengali (Honours / General / LCC2 /AECC1)</td>
<td>32</td>
<td>Philosophy (Honours / General)</td>
</tr>
<tr>
<td>5</td>
<td>Bio-Chemistry (Honours / General)</td>
<td>33</td>
<td>Physical Education (General)</td>
</tr>
<tr>
<td>6</td>
<td>Botany (Honours / General)</td>
<td>34</td>
<td>Physics (Honours / General)</td>
</tr>
<tr>
<td>7</td>
<td>Chemistry (Honours / General)</td>
<td>35</td>
<td>Physiology (Honours / General)</td>
</tr>
<tr>
<td>8</td>
<td>Computer Science (Honours / General)</td>
<td>36</td>
<td>Political Science (Honours / General)</td>
</tr>
<tr>
<td>9</td>
<td>Defence Studies (General)</td>
<td>37</td>
<td>Psychology (Honours / General)</td>
</tr>
<tr>
<td>10</td>
<td>Economics (Honours / General)</td>
<td>38</td>
<td>Sanskrit (Honours / General)</td>
</tr>
<tr>
<td>11</td>
<td>Education (Honours / General)</td>
<td>39</td>
<td>Social Science (General)</td>
</tr>
<tr>
<td>12</td>
<td>Electronics (Honours / General)</td>
<td>40</td>
<td>Sociology (Honours / General)</td>
</tr>
<tr>
<td>13</td>
<td>English ((Honours / General/ LCC1/ LCC2/AECC1)</td>
<td>41</td>
<td>Statistics (Honours / General)</td>
</tr>
<tr>
<td>14</td>
<td>Environmental Science (Honours / General)</td>
<td>42</td>
<td>Urdu (Honours / General / LCC2 /AECC1)</td>
</tr>
<tr>
<td>15</td>
<td>Environmental Studies (AECC2)</td>
<td>43</td>
<td>Women Studies (General)</td>
</tr>
<tr>
<td>16</td>
<td>Film Studies (General)</td>
<td>44</td>
<td>Zoology (Honours / General)</td>
</tr>
<tr>
<td>17</td>
<td>Food Nutrition (Honours / General)</td>
<td>45</td>
<td>Industrial Fish and Fisheries – IFFV (Major)</td>
</tr>
<tr>
<td>18</td>
<td>French (General)</td>
<td>46</td>
<td>Sericulture – SRTV (Major)</td>
</tr>
<tr>
<td>19</td>
<td>Geography (Honours / General)</td>
<td>47</td>
<td>Computer Applications – CMAV (Major)</td>
</tr>
<tr>
<td>20</td>
<td>Geology (Honours / General)</td>
<td>48</td>
<td>Tourism and Travel Management – TTMV (Major)</td>
</tr>
<tr>
<td>21</td>
<td>Hindi (Honours / General / LCC2 /AECC1)</td>
<td>49</td>
<td>Advertising Sales Promotion and Sales Management – ASPV (Major)</td>
</tr>
<tr>
<td>22</td>
<td>History (Honours / General)</td>
<td>50</td>
<td>Communicative English – CMEV (Major)</td>
</tr>
<tr>
<td>23</td>
<td>Islamic History Culture (Honours / General)</td>
<td>51</td>
<td>Clinical Nutrition and Dietetics CNDV (Major)</td>
</tr>
<tr>
<td>24</td>
<td>Home Science Extension Education (General)</td>
<td>52</td>
<td>Bachelor of Business Administration (BBA) (Honours)</td>
</tr>
<tr>
<td>25</td>
<td>House Hold Art (General)</td>
<td>53</td>
<td>Bachelor of Fashion and Apparel Design – (B.F.A.D.) (Honours)</td>
</tr>
<tr>
<td>26</td>
<td>Human Development (Honours / General)</td>
<td>54</td>
<td>Bachelor of Fine Art (B.F.A.) (Honours)</td>
</tr>
<tr>
<td>27</td>
<td>Human Rights (General)</td>
<td>55</td>
<td>B. Music (Honours / General) and Music (General)</td>
</tr>
<tr>
<td>28</td>
<td>Journalism and Mass Communication (Honours / General)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The above shall be effective from the academic session 2018-2019.

SENATE HOUSE
KOLKATA-700073
The 4th June, 2018

(Dr. Santanu Paul)
Deputy Registrar
UNIVERSITY OF CALCUTTA

SYLLABUS

FOR

THREE-YEAR B.Sc. HONOURS COURSE

UNDER CHOICE BASED CREDIT SYSTEM

BOTANY

FOR SESSION 2018-2019
Core courses (CC-Total 14 courses to be studied in semesters. All theoretical papers i.e., BOT-A…TH are of 4 credits each and the respective practical papers i.e., BOT-A….P of 2 credits each)

SEM I:

SEM II

SEM III
6. Reproductive biology of Angiosperms (BOT-A-CC-3-6-TH, BOT-A-CC-3-6-P)
7. Plant systematic (BOT-A-CC-3-7-TH, BOT-A-CC-3-7-P)

SEM IV
8. Plant geography, Ecology and Evolution (BOT-A-CC-4-8-TH, BOT-A-CC-4-8-P)
10. Genetics (BOT-A-CC-4-10-TH, BOT-A-CC-4-10-P)

SEM V

SEM VI
14. Plant Metabolism (BOT-A-CC-6-14-TH, BOT-A-CC-6-14-P)

Skill enhancement courses (SEC- 2, two papers to be selected from the list taking 1 from SEC A in 3rd SEM and 1 from SEC B in 4th SEM. Both the papers of 2 credits each and theoretical only)

SEC A (SEM III)
SEC B (SEM IV)
3. Plant Breeding (BOT-A-SEC-B-4-3)
4. Mushroom Culture Technology (BOT-A-SEC-B-4-4)

Discipline specific elective courses (DSE, four courses to be selected from the 2 groups (A & B). A student shall choose any one paper from each of Group- A and Group- B in 5th AND 6th SEM. Each course comprises of theoretical component of 4 credits and practical ones of 2 credits)

DSE-A (Group- A)

SEM V

SEM VI

DSE-B (Group-B)

SEM V
6. Horticultural practices and Post Harvest Technology (BOT-A-DSE-B-5-6-TH, BOT-A-DSE-B-5-6-P)

SEM VI
7. Research Methodology (BOT-A-DSE-B6-7-TH, BOT-A-DSE-B-6-7-P)
8. Natural resource management (BOT-A-DSE-B-6-8-TH, BOT-A-DSE-B-6-8-P)

Dissertation/Project: A Dissertation / Project may be given in lieu of a DSE. This is considered as a special course and will be of 6 credits. (Vide page 4 of CUS/268(CIR/18, dated 07.05.2018)). However, the details of the topics, modalities of evaluation etc. to be notified latter on.
<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>COURSE OPTED</th>
<th>COURSE NAME</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Core Course 1- BOT-A-CC-1-1-TH</td>
<td>Phycology and microbiology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 1- BOT-A-CC-1-1-P</td>
<td>Phycology and microbiology Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course 2- BOT-A-CC-1-2-TH</td>
<td>Mycology and phytopathology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 2- BOT-A-CC-1-2-P</td>
<td>Mycology and phytopathology Practical</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>Core Course 3- BOT-A-CC-2-3-TH</td>
<td>Plant anatomy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 3- BOT-A-CC-2-3-P</td>
<td>Plant anatomy Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course 4- BOT-A-CC-2-4-TH</td>
<td>Archegoniate</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 4- BOT-A-CC-2-4-P</td>
<td>Archegoniate Practical</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>Core Course 5- BOT-A-CC-3-5-TH</td>
<td>Palaeobotany and palynology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 5- BOT-A-CC-3-5-P</td>
<td>Palaeobotany and palynology Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course 6- BOT-A-CC-3-6-TH</td>
<td>Reproductive biology of angiosperms</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 6- BOT-A-CC-3-6-P</td>
<td>Reproductive biology of angiosperms Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course 7- BOT-A-CC-3-7-TH</td>
<td>Plant systematics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 7- BOT-A-CC-3-7-P</td>
<td>Plant systematics Practical</td>
<td>2</td>
</tr>
<tr>
<td>IV</td>
<td>Core Course 8- BOT-A-CC-4-8-TH</td>
<td>Plant geography, ecology and evolution</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 8- BOT-A-CC-4-8-P</td>
<td>Plant geography, ecology and evolution Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course 9- BOT-A-CC-4-9-TH</td>
<td>Economic botany</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 9- BOT-A-CC-4-9-P</td>
<td>Economic botany Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course 10- BOT-A-CC-4-10-TH</td>
<td>Genetics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 10- BOT-A-CC-4-10-P</td>
<td>Genetics Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>SEC B – BOT-A-SEC-B-4-3/ BOT-A-SEC-B-4-4</td>
<td>Only ONE paper to be selected</td>
<td>2</td>
</tr>
<tr>
<td>V</td>
<td>Core Course 11- BOTA-CC-5-11-TH</td>
<td>Cell and molecular biology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 11- BOTA-CC-5-11-P</td>
<td>Cell and molecular biology Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course 12- BOTA-CC-5-12-TH</td>
<td>Biochemistry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 12- BOTA-CC-5-12-P</td>
<td>Biochemistry Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DSE A: BOTA-DSE-A-5-1 & 2-TH & P</td>
<td>Only ONE paper to be selected from Group A</td>
<td>4 & 2</td>
</tr>
<tr>
<td></td>
<td>DSE B: BOTA-DSE-B-5-5 & 6-TH & P</td>
<td>Only ONE paper to be selected from Group B</td>
<td>4 & 2</td>
</tr>
<tr>
<td>VI</td>
<td>Core Course 13- BOT-A-CC-6-13-TH</td>
<td>Plant physiology</td>
<td>4</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Core Course 13- BOT-A-CC-6-13-P</td>
<td>Plant physiology practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Core Course 14- BOT-A-CC-6-14-TH</td>
<td>Plant metabolism</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Core Course 14- BOT-A-CC-6-14-P</td>
<td>Plant metabolism Practical</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DSE A: BOT-A-DSE-A-6-3&4-TH & P</td>
<td>Only ONE paper to be selected Group A</td>
<td>4 & 2</td>
</tr>
<tr>
<td></td>
<td>DSE B: BOT-A-DSE-B-6-7&8 -TH & P</td>
<td>Only ONE paper to be selected Group B</td>
<td>4 & 2</td>
</tr>
</tbody>
</table>
C.U. B.Sc. BOTANY (HONOURS)

SEMESTER I

CORE COURSE 1

PHYCOLOGY AND MICROBIOLOGY (BOT-A-CC-1-1-TH)

THEORETICAL

(Credits 4, Lectures-60)

PHYCOLOGY

1. General account:
 1.1. Thallus organization, Structure of algal cell, 1.2. Ultrastructure of Plastids and Flagella, 1.3. Origin and evolution of sex, 1.4. Life cycle patterns, 1.5. Significant contributions of important phycologists (Fritsch, Smith, R. N. Singh, T.V. Desikachary, H.D. Kumar, M.O.P. Iyengar)

 5 lectures

2. Classification:
 2.1. Criteria and basis of Fritsch’s classification
 2.2. Classification by Lee (2008) upto phylum with examples
 2.3. Salient features of Cyanobacteria, Rhodophyta, Chlorophyta, Charophyta, Bacillariophyta, Xanthophyta, Phaeophyta, Heterokontophyta.

 5 lectures

3. Cyanobacteria:

 4 lectures

4. Bacillariophyta:

 6 lectures

5. Life History:

 10 lectures

MICROBIOLOGY

1. Virus:
 1.1. Discovery, 1.2. Plant virus- types, 1.3. Transmission and translocation of Plant virus, 1.4. TMV-
Physicochemical characteristics and Multiplication, 1.5. One step growth curve, 1.6. Lytic cycle (T4 phage) and Lysogenic cycle (Lambda phage), Significance of lysogeny, 1.7.Viroids and Prions.

2. Bacteria:
2.1. Discovery, 2.2. Distinguishing features of Archaea and Bacteria, 2.3. Characteristics of some major groups: Proteobacteria (Enterobacteria), Firmicutes, Mollicutes, Actinobacteria, Spirochaetes, Chlamydiae, 2.4. Bacterial growth curve and generation time, 2.5. Flagella (ultrastructure) & Pilii, 2.6. Cell wall – chemical structure and differences between Gram +ve & Gram – ve bacteria, 2.7. Bacterial genome and plasmid, 2.8. Endospore - formation, structure and function, 2.9. Genetic Recombination (a) Transformation – with special emphasis on Natural and Induced competence and DNA uptake, (b) Conjugation– F- factor, F+ X F-, Hfr X F-, concept of F', chromosome mobilization, (c) Transduction– Generalised and specialized.

PRACTICAL- PHYCOLOGY AND MICROBIOLOGY (BOT-A-CC-1-1-P) (Credits 2)

1. Work out: Algae, Bacterial staining
2. Identification with reasons: (Algae and bacteria)
3. Classroom performance (Lab notebook, submission and permanent slides)
4. Viva- voce

ALGAE
1. Work out of the following algae with reproductive structure (Free hand drawing and drawing under drawing prism with magnification): Oedogonium, Chara, Ectocarpus.
2. Study of (a) Permanent slides : Gloeotrichia, Volvox, Vaucheria, Coleochaete, Polysiphonia, Centric and Pennate diatom; (b) Macroscopic specimens : Laminaria, Sargassum.

MICROBIOLOGY
1. Preparation of bacterial media – (a) Nutrient agar and nutrient broth, (b) Preparation of slants and pouring Petri-plates.
2. Sub-culturing of bacterial culture.
3. Gram staining from bacterial culture.
4. Microscopic examination of bacteria from natural habitat (curd) by simple staining.

FIELD WORK
At least one local excursion to be conducted for study and collection of algae (only 5 from natural habitat) and another local excursion should be conducted to give an introductory idea about plant diversity (Collection not required).

CLASSROOM PERFORMANCE
1. Laboratory Note Book of each section must be signed by the respective teacher with date during practical classes.
2. Slides (permanent) prepared during practical classes.
3. Submission (5 algae collected from natural habitat and identified latter)

CORE COURSE 2
MYCOLOGY AND PHYTO-PATHOLOGY (BOT-A-CC-1-2-TH)
THEORETICAL
(Credits 4, Lectures 60)

MYCOLOGY
1. General Account:
 1.1. Hyphal forms, 1.2. Fungal spore forms and mode of liberation, 1.3. Sexual reproduction and degeneration of sex, 1.4. Parasexuality and sexual compatibility, 1.5. Life cycle patterns.

........6 lectures

2. Classification:
 2.1. Classification of Fungi (Ainsworth, 1973) upto sub-division with diagnostic characters and examples. 2.2. General characteristics of Myxomycota, Oomycota, Zygomycota, Ascomycota, Basidiomycota, Deuteromycota.

........6 lectures

3. Life history:

........10 lectures
4. Mycorrhiza:
4.1. Types with salient features, 4.2. Role in Agriculture & Forestry.

5. Lichen:
5.1. Types, 6.2. Reproduction, 6.3. Economic and ecological importance

PHYTO-PATHOLOGY
1. Terms and Definitions:

2. Host – parasite Interaction:
2.1. Mechanism of infection (Brief idea about Pre-penetration, Penetration and Post-penetration), 2.2. Pathotoxin (Definition, criteria and example), 2.3. Defense mechanism with special reference to Phytoalexin, 2.4. Resistance- Systemic acquired and Induced systemic.

3. Plant Disease Management:

4. Symptoms, Causal organism, Disease cycle and Control measures of:

PRACTICAL- MYCOLOGY AND PHYTO-PATHOLOGY (BOT-A-CC-1-2-P)
(Credits 2)

MYCOLOGY
1. Work out of the following fungi with reproductive structures (including microscopic measurement of Reproductive structures): Rhizopus (asexual), Ascobolus, Agaricus.
2. Study from permanent slides: Zygospore of Rhizopus, Conidia of Fusarium, Conidiophore of
3. Morphological study of Fungi (fruit body of *Polyporus, Cyathus*), Lichens (fruticose and foliose).

PHYTO- PATHOLOGY
1. Preparation of fungal media (PDA).
2. Sterilization process.
3. Isolation of pathogen from diseased leaf.
4. Inoculation of fruit and subculturing.
5. Identification: Pathological specimens of Brown spot of rice, Bacterial blight of rice, Loose smut of wheat, Stem rot of jute, Late blight of potato; Slides of uredial, telial, pycnial & aecial stages of *Puccinia graminis*.

FIELD WORK
At least one local excursion to be conducted for study and collection of macrofungi (only 5).

CLASSROOM PERFORMANCE
1. Laboratory Note Book of each section must be signed by the respective teacher with date during practical classes.
2. Slides (permanent) prepared during practical classes.
3. Submission (5 Macro fungi)

SEMIESTER- II
CORE COURSE 3
PLANT ANATOMY (BOT-A-CC-2-3-TH)
(Credits 4, Lectures 60)

ANATOMY
1. **Cell wall:**
 8 lectures
2. **Stomata:**
2.1. Types (Metcalfe and Chalk, Stebbins and Khush).

3. Stele:
3.1 Leaf-trace and leaf-gap, 3.2. Stelar types & evolution

5. Secondary growth:

6. Mechanical tissues and the Principles governing their distribution in plants.

7. Developmental Anatomy:
7.1. Organisation of shoot apex (Tunica–Corpus) and Root apex (Korper-Kappe), 7.2. Plastochrone.

8. Ecological Anatomy:

PRACTICAL- PLANT ANATOMY (BOT-A-CC-2-3-P)
(Credits 2)

1. Workout on Plant Anatomy
2. Identification with reasons
3. Classroom performance: (Lab records, slides)
4. Viva

PLANT ANATOMY
1. Microscopic studies on: Types of stomata, sclereids, raphides (Colocasia), cystolith (Ficus leaf) starch grains, aleurone grains, laticiferous ducts, oil glands.

3. Study of anomalous secondary structure in stem of *Bignonia, Boerhaavia, Tecoma, Dracaena* and root of *Tinospora*

CORE COURSE 4
ARCHAEGONIATE (BOT-A-CC-2-4-TH)
THEORITICAL
(Credits 4, Lectures 60)

BRYOPHYTES

1. General Account:
 1.1. General characteristics and adaptations to land habit, 1.2. Classification (Strotler and Crandle Strotler, 2009) up to class with diagnostic characters and examples.

2. **Life History:** Gametophyte structure and Reproduction, Development and Structure of sporophyte, Spore dispersal in:

3. **Phylogeny:**

4. **Importance:**
 Role of bryophytes in: 4.1. Plant succession, 4.2. Pollution Monitoring, 4.3. Economic importance of bryophytes with special reference to *Sphagnum*.
PTERIDOPHYTES

1. General Account:

2. Life History:

3. Telome concept and its significance in the origin of different groups of Pteridophytes.

4. Heterospory and Origin of Seed habit.

5. Economic importance as food, medicine and Agriculture.

GYMNOSPERMS

1. Classification of vascular plants by Gifford & Foster (1989) upto division (Progymnospermophyta to Gnetophyta) with diagnostic characters and examples.

2. Progymnosperms:
 Diagnostic characters of the group, 2.2. Vegetative and reproductive features of Archeopteris, 2.3. Phylogenetic importance.

3. Life History:
 Distribution in India; Vegetative and Reproductive structure of sporophyte, Development of gametophyte in: 3.1. *Cycas*, 3.2. *Pinus* and 3.3. *Gnetum*.

4. Economic Importance with reference to Wood, Resins, Essential oils, and Drugs.
PRACTICAL- ARCHAEGONIATE (BOT-A-CC-2-4-P)
(Credits 2)

1. Workout on Pteridophytes
2. Identification with reasons (Bryophytes, Pteridophytes and Gymnosperms)
3. Classroom performance: (Lab records, slides)
4. Field report
5. Viva

BRYOPHYTES
1. Morphological study of the plant body: Genera as mentioned in theoretical syllabus and *Riccia*, *Porella*.

PTERIDOPHYTES
1. Morphological study of the sporophytic plant body: Genera as mentioned in the theoretical syllabus and *Lycopodium*, *Ophioglossum* and *Marsilea*.
2. Workout of the reproductive structures: *Selaginella*, *Equisetum*, *Pteris*.

GYMNOSPERMS

FIELD STUDY
Botanical excursion to familiarize the students with the natural habitats of these groups is desirable. No individual collection should be allowed. Students should submit only photographs in their field report.
SEMMETER- III
CORE COURSE-5
PALAEOBOTANY AND PALYNOLOGY (BOT-A-CC-3-5-TH)
THEORETICAL
(Credits 4, Lectures 60)

PALAEOBOTANY & PALYNOLOGY

1. Geological time scale with dominant plant groups through ages.4 lectures

2. Plant Fossil:
 2.1. Types: Body fossil (Micro- and Megafossils), Trace fossil, Chemical fossil, Index fossil, 2.2. Different modes of preservation (Schopf, 1975), 2.3. Conditions favouring fossilization, 2.4. Nomenclature and Reconstruction, 2.5. Principle of fossil dating (a brief idea), 2.6. Importance of fossil study.12 lectures

3. Fossil Pteridophytes:
 Structural features, Geological distribution and Evolutionary significance of 3.1. Rhynia, 3.2. Lepidodendron (Reconstructed), 3.3. Calamites (Reconstructed).10 lectures

4. Fossil gymnosperms:
 Structural features and Geological distribution of reconstructed genera: 4.1. Lyginopteris, 4.2. Williamsonia, 4.3. Cordaites.10 lectures

5. Indian Gondwana System - Three fold division with major megafossil assemblages.6 lectures

6. Palynology:

7. Applied Palynology:
PRACTICAL- PALAEOBOTANY AND PALYNOLOGY (BOT-A-CC-3-5-P)
(Credits 2)

1. Study from permanent preparations
2. Identification with reasons
3. Classroom performance: (Lab records)
4. Viva

PALAEOBOTANY AND PALYNOLOGY

1. Morphological study: *Ptilophyllum* and *Glossopteris* leaf fossils.
2. Study from permanent slides: T.S. of stem of *Rhynia, Lepidodendron, Calamites, Lyginopteris, Cordaites*.
3. Study of Pollen types (colpate, porate and colporate) from permanent slides.
 Slides may be prepared from specimens: Colpate (*Leonurus sibiricus/ Brassica sp.*), Porate (*Hibiscus rosa-sinensis*), Colporate (*Cassia sophera/ C. tora*).

CLASSROOM PERFORMANCE

1. Laboratory Note Book of each section must be signed by the respective teacher with date during practical classes.

CORE COURSE- 6

REPRODUCTIVE BIOLOGY OF ANGIOSPERMS (BOT-A-CC-3-6-TH)
THEORETICAL
(Credits 4, Lectures 60)

MORPHOLOGY OF ANGIOSPERMS

1. Inflorescence types with examples.8 lectures

2. Flower, induction of flowering, flower development - genetic and molecular aspects.14 lectures

3. Fruits and seeds - types with examples.8 lectures
EMBRYOLOGY

1. Pre-fertilisation changes:
 1.1. Microsporogenesis and Microgametogenesis, 1.2. Megasporogenesis and Megagametogenesis (monosporic, bisporic and tetrasporic).

2. Fertilisation:
 2.1. Pollen germination, 2.2. Pollen tube- growth, entry into ovule and discharge, 2.3. Double fertilization.

3. Post-fertilisation changes:

4. Apomixis & Polyembryony:
 4.1. Apomixis- Apospory and Apogamy, 4.2. Polyembryony- different types.

PRACTICAL- REPRODUCTIVE BIOLOGY OF ANGIOSPERMS (BOT-A-CC-3-6-P)
(Credits 2)

1. Identification with reasons (Morphology)
2. Classroom performance: (Lab records)
3. Field Records (Field note book/ project work)
4. Viva

REPRODUCTIVE BIOLOGY OF ANGIOSPERMS

1. Inflorescence types- study from fresh/ preserved specimens
2. Flowers- study of different types from fresh/ preserved specimens
3. Fruits- study from different types from fresh/preserved specimens
4. Study of ovules (permanent slides/ specimens/photographs)- types (anatropous, orthotropous, amphitropous and campylotropous)
5. Field study desirable
6. A project supported along with photographs taken during field study to be submitted giving comprehensive idea about different types of inflorescence, flowers and fruits.

CLASSROOM PERFORMANCE

Same as above.
TAXONOMY OF ANGIOSPERMS

1. Introduction:

2. Nomenclature:
Type method, Publication, Rank of taxa, Rules of priority, Retention and rejection of names, Author Citation, Effective and valid publication, Elementary knowledge of ICN- Principles.

3. Systems of classification:
3.1. Systematics in Practice: Herbaria and Botanical Gardens – their role in teaching and research; important Herbaria and Botanical Gardens of India and world (3 each); 3.2. Dichotomous keys – indented and bracketed.

4. Phenetics and Cladistics:
Brief idea on Phenetics, Numerical taxonomy- methods and significance; Cladistics- construction of dendrogram and primary analysis; Monophyletic, polyphyletic and paraphyletic groups; Plesiomorphy and apomorphy.

5. Data sources in Taxonomy:
Supportive evidences from: 5.1. Phytochemistry, 5.2. Cytology, 5.3. Palynology and 5.4. Molecular biology data (Protein and Nucleic acid homology).
6. Diagnostic features, Systematic position (Bentham & Hooker and Cronquist), Economically important plants (parts used and uses) of the following families:

6.2. Dicotyledons: Nymphaeaceae, Magnoliaceae, Leguminosae (subfamilies), Polygonaceae, Euphorbiaceae, Malvaceae, Umbelliferae (Apiaceae), Labiatae (Lamiaceae), Solanaceae, Scrophulariaceae, Acanthaceae, Rubiaceae, Cucurbitaceae, Compositae (Asteraceae).

PRACTICAL- PLANT SYSTEMATICS (BOT-A-CC-3-7-P) (Credits 2)

1. Workout on Angiosperms
2. Spot Identification
3. Classroom performance: (Lab records)
4. Field Records (Field note book, Herbarium specimens)
5. Viva

ANGIOSPERMS

1. Work out, description, preparation of floral formula and floral diagram, identification up to genus with the help of suitable literature of wild plants and systematic position according to Bentham Hooker system of classification from the following families: Malvaceae, Fabaceae (Papilionaceae), Solanaceae, Scrophulariaceae, Acanthaceae, Labiatae (Lamiaceae), Rubiaceae.

2. Spot identification (Binomial, Family) of common wild plants from families included in the theoretical syllabus (list to be provided).

FIELD WORK
At least three excursions including one excursion to Acharya Jagadish Chandra Bose Indian Botanic Garden (Shibpur, Howrah) and Central National Herbarium (CNH).

FIELD RECORDS

1. Field Note Book (authenticated) with field notes on the plants of the area of excursion and
voucher specimen book.

2. Herbarium specimen: Preparation of 25 angiospermic specimens (identified with author citation, voucher number and arranged following Bentham & Hooker’s system of classification) to be submitted during examination.

CLASSROOM PERFORMANCE
Same as above.

SEMESTER IV
CORE COURSE-8
PLANT GEOGRAPHY, ECOLOGY AND EVOLUTION (BOT-A-CC-4-8-TH)
THEORETICAL
(Credits 4, Lectures 60)

PLANT GEOGRAPHY
1. Phytogeographical regions:
 1.1. Phytogeographical regions of India (Chatterjee 1960); 1.2. Dominant flora of Eastern Himalaya, Western Himalaya and Sunderban.

2. Endemism:
 2.1 Endemic types and Factors; 2.2. Age & Area hypothesis and Epibiotic theory; 2.3. Endemism in Indian flora.

ECOLOGY
1. Preliminary idea on:
 1.1. Habitat and Niche, 1.2. Ecotone and edge–effect, 1.3. Microclimate, 1.4. Ecads, ecotype and ecoclines, 1.5. Carrying capacity.

2. Community ecology:
 2.1. Community- Characteristics and diversity, 2.2. Ecological succession –Primary and secondary, Seral stages (with reference to Hydrosere), autogenic and allogenic succession.

3.1. Plant indicators (metallophytes); 3.2. Phytoremediation.

4. Conservation of Biodiversity:
 4.1. Level of Biodiversity: genetic, species & ecosystem diversity, 4.2. Biodiversity hot spots- criteria,
Indian hotspots, 4.3. *In-situ* and *ex-situ* conservation, 4.4. Seed-banks, 4.5. Cryopreservation

EVOLUTION

1.1 Introduction, 1.2. Theories of evolution: Natural selection, Group selection, Neutral theory of molecular evolution, 1.3. Phyletic gradualism, Punctuated equilibrium and Stasis

2.1 Brief idea on: Stabilizing directional, disruptive and sexual selection; Speciation: Sympatric and allopatric speciation; Coevolution, Adaptive radiation, Reproductive isolation

PRACTICAL- PLANT GEOGRAPHY, ECOLOGY AND EVOLUTION (BOT-A-CC-4-8-P)

(Credits 2)

1. Workout on ecological parameters
2. Classroom performance: (Lab records)
3. Field Records (Field note book of phytogeographical study and ecological study)
4. Viva

PLANT GEOGRAPHY

1. Field visit- at least one long excursion at different phytogeographical region of India.
2. Study of local flora and submission of a project report highlighting phytogeographical characteristics of the region.

ECOLOGY

1. Study of community structure by quadrat method and determination of (i) Minimal size of the quadrat, (ii) Frequency, density and abundance of components (to be done during excursion/field visit).
2. Comparative anatomical studies of leaves form polluted and less polluted areas.
3. Measurement of dissolved O₂ by azide modification of Winkler’s method.
4. Comparison of free CO₂ from different sources.
 6 lectures

2. Cereals: Rice and wheat (origin, morphology, processing and uses).
 6 lectures

3. Legumes: Origin, morphology and uses of gram and mung bean. Importance to man and environment.
 6 lectures

4. Sugar and starches: Morphology and processing of sugarcane, products and byproducts of sugarcane industry. Potato- morphology, propagation and uses.
 5 lectures

5. Spices: Listing of important spices, their family and part used.
 6 lectures

 5 lectures

7. Oil and fats: General description, classification, extraction, their uses and health implications of mustard, soybean, coconut (Botanical name, family and uses). Essential oils- general account, extraction methods, comparison with fatty oils and their uses.
 10 lectures

8. Drug-yielding plants: Therapeutic and habit forming drugs with special reference to Cinchona, Digitalis, Papavar, Cannabis and Tobacco (morphology, processing, uses and health hazards).
 8 lectures

 4 lectures

10. Fibers: Cotton and Jute (Morphology, extraction and uses).
 4 lectures

PRACTICAL- ECONOMIC BOTANY (BOT-A-CC-4-9-P)
(Credits 2)

1. Workout, micro-chemical tests

2. Identification- T.S./L.S. of permanent slides
ECONOMIC BOTANY

1. Cereals: Wheat (habit sketch, L.S./T.S. of grain, starch grains, micro-chemical tests); rice (habit sketch, study of paddy and grain, starch grains, micro-chemical tests)
2. Legume: Soybean, ground nut (habit, fruit, seed structure, micro-chemical tests)
3. Source of sugars and starches: Sugarcane (habit sketch; cane juice- micro-chemical tests); potato (habit sketch, tuber morphology, T.S. of tuber to show localization of starch grains, W.M. of starch grains, micro-chemical tests).
4. Tea- tea leaves, tests for tannin
5. Mustard- plant specimen, seeds, tests for fat in crushed seeds
7. Sal, Teak- section of young stem.
8. Jute- specimen, transverse section of stem, tests for lignin on T.S. of stem and study of fibre following maceration technique.

CORE COURSE 10
GENETICS (BOT-A-CC-4-10-TH)
THEORETICAL
(Credits 4, Lectures 60)

1. Introduction: Mendelian genetics and its extension6 lectures
2. Linkage, Crossing over and Gene Mapping:
 2.1 Complete and incomplete linkage (example), linked gene does not assort independently (example), linkage group, 2.2. Crossing over, crossing over produces recombination (example), detection of crossing over (McClintock’s experiment), and 2.3. Molecular mechanism of crossing over (Holliday model), 2.4. Gene mapping with three point test cross, detection of middle gene in three point test cross, calculation of recombination frequencies, 2.5. Co-efficient of coincidence and

3. Epistasis and Polygenic inheritance in plants.

6. Mutation:

7. Structural organisation of Gene:

PRACTICAL- GENETICS (BOT-A-CC-4-10-P)
(Credits 2)

1. Genetics
2. Identification
3. Classroom performance (Laboratory Records and slides)
4 Viva- voce

GENETICS

1. Introduction to chromosome preparation: Pre-treatment, Fixation, Staining, Squash and Smear preparation, Preparation of permanent slides.
2. Determination of mitotic index and frequency of different mitotic stages in pre-fixed root tips of Allium cepa.
3. Study of mitotic chromosome: Metaphase chromosome preparation, free hand drawing under high power objective, drawing with drawing prism under oil immersion lens, determination of 2n number, and comment on chromosome morphology of the following specimens from root tips:
Allium cepa, Aloe vera, Lens esculenta.

4. Study of chromosomal aberrations developed due to exposure to any two pollutants/ pesticides etc.

5. Study of meiotic chromosome: Smear preparation of meiotic cells, identification of different stages and free hand drawing of the following specimens from flower buds: Allium cepa and Setcreasea sp.

6. Identification from permanent slides: Meiosis – (i) normal stages (ii) abnormal stages – laggard, anaphase bridge, ring chromosome (Rhoeo discolor); Mitosis – (i) normal stages, (ii) abnormal stages- early separation, late separation, multipolarity, sticky bridge, laggard, fragmentation, (ii) pollen mitosis.

SEMESTER V
CORE COURSE- 11
CELL AND MOLECULAR BIOLOGY (BOT-A-CC-5-11-TH)
THEORETICAL
(Credits 4, Lectures 60)

CELL BIOLOGY

1. Origin and Evolution of Cells:

 6 lectures

2. Nucleus and Chromosome:

 6 lectures

3. Cell cycle and its regulation:

 6 lectures

MOLECULAR BIOLOGY
1. **DNA Replication, Transcription and Translation (Prokaryotes & Eukaryotes):**

1.1. Central Dogma, 1.2. Semiconservative DNA replication – mechanism, enzymes involved in DNA replication- DNA polymerase, DNA gyrase, Helicase, Ligase, primase and other accessory proteins, 1.3. Eukaryotic replication with special reference to replication licensing factor, assembly of new nucleosome, replication at the end chromosome telomere, telomerase concept, 1.4. Fidelity of DNA replication- prokaryote: nucleotide selection, proof reading, mismatch repair; eukaryote: through selection of error prone DNA polymerase, 1.5. Transcription, 1.6 RNA processing, 1.7. Aminoacylation of tRNA, 1.8. Translation.

...............20 lectures

2. **Gene Regulation:**

2.1 Concept of Lac-operon, 2.2. Positive and negative control.

...............4 lectures

3. **Genetic Code:**

3.1 Properties-evidences & exceptions, 3.2. Decipherence of codon (Binding technique).

...............4 lectures

4. **Recombinant DNA Technology:**

...............10 lectures

5. Development and causes of Cancer (in general and brief), tumor suppressor gene and oncogene.

...............4 lectures

PRACTICAL- CELL BIOLOGY (BOT-A-CC-5-11-P)

(Credits 2)

1. Work out
2. Identification
3. Classroom performance (Laboratory Records and slides)
4. Preparation of models/charts
5. Viva-voce

CELL BIOLOGY

1. Study of plant cell structure with the help of epidermal peal mount of Onion/Rhoeo/Crinum
2. Measurement of cell size by the technique of micrometry.
3. Counting cells per unit volume with the help of haemocytometer (Yeast/pollengrains)
4. Cytochemical staining of DNA- Pyronine-methyl green staining.
5. Estimation of DNA content through DPA staining.
7. Study of nucleolus through hematoxylin/orcin staining and determination of nucleolar frequency.

CORE COURSE- 12
BIOCHEMISTRY (BOT-A-CC-5-12-TH)
THEORETICAL
(Credits 4, Lectures 60)

1. Biochemical Foundations:
 1.1. Covalent and non-covalent bonds; hydrogen bond; Van der Waal's forces; 1.2. Structure and properties of water; 1.3. pH and buffer (inorganic and organic); 1.4. Handerson-Hasselbalch equation; 1.5. Isoelectric point.

2. Molecules of life:
 2.1. Nucleic Acids – structure of nucleosides and nucleotides; oligo- and poly nucleotides, B & Z form of DNA, RNA- different forms; nucleotide derivatives (ATP, NADP), 2.2. Proteins – structure and classification of amino acids; primary, secondary, tertiary and quaternary structure of proteins; 2.3. Carbohydrates - structure of mono-, di- and polysaccharide; stereoisomers, enantiomers and epimers; 2.4. Lipids - structure of simple lipid and compound lipid (phospholipids and glycolipids), fatty acids- saturated and unsaturated.

3. Energy flow and enzymology:
 3.1. Bioenergetics-Thermodynamic principles; free energy; energy rich bonds- phosphoryl group transfer and ATP; redox potentials and Biological redox reactions, 3.2. Enzymes – classification and nomenclature (IUBMB); Co-factors and co-enzymes; isozymes, 3.3. Mechanism of enzyme action; enzyme inhibition; 3.4. Enzyme kinetics (Michaelis- Menten equation) and simple problems.

4. Cell membrane:
 4.1. Membrane chemistry, 4.2. Membrane transport (uniport, symport, antiport), mechanism of ion
uptake.

......6 lectures

5. **Phosphorylation**: ATP Synthesis- Chemiosmotic model, Oxidative and Photophosphorylation-Mechanism and differences.

......6 lectures

PRACTICAL- BIOCHEMISTRY (BOT-A-CC-5-12-P)

(Credits 2)

1. Workout on Plant Biochemistry (Quantitative & Qualitative)
2. Classroom performance (Laboratory Records and slides)
3. Viva

PLANT BIOCHEMISTRY

Qualitative:
1. Detection of organic acids: citric, tartaric, oxalic and malic from laboratory samples.
2. Detection of carbohydrate and protein from plant samples.
3. Detection of the nature of carbohydrate – glucose, fructose , sucrose and starch from laboratory samples.
4. Detection of Ca, Mg, Fe, S from plant ash sample.

Quantitative:
1. Preparation of solutions and buffers.
2. Estimation of amino-nitrogen by formol titration method (glycine).
3. Estimation of glucose by Benedicts quantitative reagent.
4. Estimation of titratable acidity from lemon.
5. Estimation of catalase activity in plant samples and effect of substrate, enzyme concentration and pH on enzyme activity.
1. **Plant-water relations:**

1.1 Concept of water potential, components of water potential in plant system, 1.2. Soil-plant-Atmosphere continuum concept, Cavitation in xylem and embolism, 1.3. Stomatal physiology-mechanism of opening and closing, Role of carbon di-oxide, potassium ion, abscisic acid and blue light in stomatal movement, Antitranspirants.

 6 lectures

2. **Mineral nutrition:** essential and beneficial elements, macro- and micronutrients, methods of study and use of nutrient solutions, criteria for essentiality, mineral deficiency symptoms, roles of essential elements, chelating agents.

 6 lectures

3. **Organic Translocation:**

 6 lectures

4. **Plant Growth Regulators:**

 18 lectures

5. **Photomorphogenesis:**

 12 lectures

6. **Seed dormancy:** 6.1. Types, Causes and Methods of breaking seed dormancy, 6.2. Biochemistry of seed germination.

 6 lectures

7. **Physiology of Senescence and Ageing.**

 6 lectures
PRACTICAL- PLANT PHYSIOLOGY (BOT-A-CC-6-13-P)
(Credits 2)

1. Plant Physiology
2. Classroom performance (Laboratory records)
3. Viva- voce

PLANT PHYSIOLOGY
1. Determination of loss of water per stoma per hour.
2. Relationship between transpiration and evaporation.
3. Measurement of osmotic pressure of storage tissue by weighing method.
5. Effect of temperature on absorption of water by storage tissue and determination of Q_{10}.
6. Rate of imbibition of water by starchy, proteinaceous and fatty seeds and effect of seed coat.
7. To study the phenomenon of seed germination (effect of light).
8. To study the induction of amylase activity in germinating grains.
9. To study the effect of different concentrations of IAA on Avena coleoptile elongation (IAA bioassay)

CORE COURSE 14
PLANT METABOLISM (BOT-A-CC-6-14-TH)
THEORETICAL
(Credits 4, Lectures 60)

1. Concept of metabolism: Introduction, Anabolic and catabolic metabolic pathways, regulation of metabolism, role of regulatory enzymes (allosteric, covalent modulation and isozymes)

2. Photosynthesis:
2.1. Chemical structure of chlorophyll a and b, absorption and action spectra, biological significance of carotenoid pigments, 2.2. Red drop and Emerson effect, Components of photosystems (light harvesting complex), photochemical reaction centres, Cyclic and noncyclic electron transport, Water splitting mechanism, 2.3. Calvin cycle – Biochemical reactions & stoichiometry, 2.4. HSK Pathway—three variants of the pathway, 2.5. Photosynthetic efficiency of C_3 and C_4 plants and crop
productivity, 2.6. Photorespiration – mechanism and significance, 2.7. Crassulacean Acid Metabolism– mechanism and ecological significance.

......16 lectures

3. Respiration:

......12 lectures

4. Nitrogen Metabolism:
4.1. Assimilation of nitrate by plants, 4.2. Biochemistry of dinitrogen fixation in Rhizobium, 4.3. General principle of amino acid biosynthesis (including GS and GOGAT enzyme system).

......10 lectures

5. Lipid metabolism:
5.1. synthesis and breakdown of triglycerides, β-oxidation, glyoxalate cycle, gluconeogenesis and its role in mobilization of the lipids during seed germinbations, α- oxidation.

......8 lectures

......10 lectures

PRACTICAL- PLANT METABOLISM (BOT-A-CC-6-14-P)
(Credits 2)

1. Workout on Plant metabolism
2. Classroom performance (Laboratory Records)
3. Viva

PLANT METABOLISM
1. A basic idea of chromatography: Principle, paper chromatography and column chromatography; demonstration of column chromatography.
2. Separation of plastidial pigments by solvent and paper chromatography.
3. Estimation of total chlorophyll content from different chronologically aged leaves (young, mature and senescence) by Arnon method.
4. Effect of HCO₃ concentration on oxygen evolution during photosynthesis in an aquatic plant and to find out the optimum and toxic concentration (either by volume measurement or bubble counting).
5. Measurement of oxygen uptake by respiring tissue (per g/hr.)
6.. Determination of the RQ of germinating seeds.
7. Test of seed viability by TTC method.

SKILL ENHANCEMENT COURSE- ELECTIVE (SEC)

SEC-A

APPLIED PHYCOLOGY, MYCOLOGY AND MICROBIOLOGY (BOT-A-SEC-A-3-1)

THEORETICAL
(Credits 2, Lectures 30)

APPLIED PHYCOLOGY

......10 lectures

APPLIED MYCOLOGY
1. Fungi as food, 2. Cheese and Ethanol- Industrial production (brief outline), 3. Fungal sources and uses of Enzyme (Cellulase), Amino acid (Tryptophan), Vitamin (Riboflavin), Antibiotic (Griseofulvin), Pharmaceuticals (Cyclosporin-A). 4. Aflatoxin

......10 lectures

APPLIED MICROBIOLOGY
1. Industrial Production of Vinegar and Streptomycin (brief outline), 2. Microbial sources and uses of Enzyme (Amylase, Protease), Amino acid (Glutamic acid, Lysine), Polysaccharides (Dextran), 3. Use of microbes as Biofertilizer and Biopesticides, 3.4. Use of microbes in mineral processing.

......10 lectures

BIOFERTILIZERS (BOT-A-SEC-A-3-2)

THEORETICAL
(Credits 2, Lectures 30)

1. General account about the microbes used as biofertilizers- *Rhizobium*- isolation, identification, mass multiplication, carrier based inoculants, actinorrhizal symbiosis.

......4 lectures

2. *Azospirillum*: isolation and mass multiplication- carrier based inoculants, associative effect of different microorganisms.

......4 lectures
3. **Azotobacter**: classification, characteristics- crop response to *Azetobacter* inoculants, maintenance and mass multiplication.4 lectures

4. Cyanobacteria (Blue green algae), *Azolla* and *Anabaena azollae* association, nitrogen fixation. Factors affecting growth, blue green algae and *Azolla* in rice cultivation.4 lectures

6. **Organic farming**: green manuring and organic fertilizers, recycling of biodegradable municipal, agricultural and industrial wastes- biocompost making methods, types and methods of vermicomposting- field application.6 lectures

SEC-B

PLANT BREEDING (BOT-A-SEC-B-4-3)

THEORITICAL

(Credits 2, Lectures 30)

1. **Plant breeding**: introduction and objectives, breeding systems- modes of reproduction in crop plants, important achievements and undesirable consequence of plant breeding.4 lectures

2. **Methods of crop improvement**: Introduction- centres of origin and domestication of crop plants, plant genetics resources; acclimatization, selection methods- for self pollination, cross pollinated and vegetatively propagated plants, hybridization- for self, cross and vegetatively propagated plants, procedure, advantages and limitations.6 lectures

4. Heterosis and hybrid seed production, 4.1. Male sterility and its use in plant breeding.2 lectures

5. Inbreeding and inbreeding depression, effect of outcrossing- a very brief idea.4 lectures

6. Molecular Breeding (use of DNA markers in plant breeding).2 lectures

7. Role of mutations, polyploidy, distant hybridization and role of biotechnology in crop improvements.6 lectures
MUSHROOM CULTURE TECHNOLOGY (BOT-A-SEC-B-4-4)
THEORETICAL
(Credits 2, Lecture 30)

1. Introduction, nutritional and medicinal value of edible mushrooms; poisonous mushrooms, types of edible mushrooms available in India- *Volvariella volvacea*, *Pleurotus citrinopileatus*, *Agaricus bisporus*.

DISCIPLINE SPECIFIC ELECTIVE COURSES
DSE-A
THEORETICAL
(Credits 4, Lectures 60)

1. Biostatistics: Definition, statistical methods, basic principles, variables- measurements, functions, limitations and uses of statistics.

2. Biometry: Data, Sample, Population, Random sampling, Frequency distribution- definition only.

3. Central tendency– Arithmetic Mean, Mode and Median; Measurement of dispersion–
Coefficient of variation, Standard Deviation, Standard error of Mean.

4. Test of significance: chi-square test for goodness of fit.

5. Probability- multiplicative and additive rules of probability: application and importance.

(Credits 2)

1. Workout
2. Classroom performance (Laboratory Records)
3. Viva

BIOSTATISTICS

1. Univariate analysis of statistical data: Statistical tables, mean, mode, median, standard deviation and standard error (using seedling population / leaflet size).
2. Calculation of correlation coefficient values and finding out the probability.
4. Calculation of ‘F’ value and finding out the probability value for the F value.
5. Basic idea of computer programme for statistical analysis of correlation coefficient,’t’ test, standard error, standard deviation.

THEORETICAL
(Credits 4, Lectures 60)

1. Scope of microbes in industry and environment.
2. Bioreactors/ Fermenters and fermentation process: solid- state and liquid-state (stationary and submerged) fermentations; batch and continuous fermentations. Components of a typical
bioreactors, types of bioreactors- laboratory, pilot scale and production fermenters. Constantly stirred fermenter, tower fermenter, fixed bed and fluidized bed bioreactors and air- lift Fermenter.12 lectures

3. Microbial production of industrial products: microorganisms involved, media, fermentation conditions, down stream processing and uses; filtration, centrifugation, cell disruption, solvent extraction, precipitation and ultrafiltration, liophilisation, spray drying, hands on microbial fermentations for the production and estimation of enzymes amylase or lipase activity, organic acids (citric or glutamic acid), alcohol (ethanol) and antibiotic (Penicillin).12 lectures

4. Microbial enzymes of industrial interest and enzyme immobilization: microorganisms for industrial applications. Methods of immobilization, advantages and applications of immobilization, large scale application of immobilized enzymes (glucose isomerase and penicillin acylase).8 lectures

5. Microbes and quality of environment: distribution of microbes in air, isolation of microorganisms from soil, air and water.8 lectures

6. Microbial flora of water: water pollution, role of microbes in sewage and domestic waste water treatment systems. Determination of BOD, COD of water samples. Microorganisms as indicators of water quality, check coliform and fecal coliform in water samples.8 lectures

7. Microbes in agriculture and remediation of contaminated soils: biological fixation, mycorrhizae, bioremediation of contaminated soils, isolation of root nodulating bacteria, arbuscular mycorrhizal colonization in plant roots.8 lectures

PRACTICAL- INDUSTRIAL AND ENVIRONMENTAL MICROBIOLOGY (BOT-A-DSE-A-5-2-P) (Credits 2)

1. Workout
2. Classroom performance (Laboratory Records)
3. Viva

INDUSTRIAL AND ENVIRONMENTAL MICROBIOLOGY

1. Principals and functioning of instruments in microbiology laboratory
2. Hands on sterilization techniques and preparation of culture media.
3. Preparation of slant, stab and pouring petriplate.
4. A visit to any educational institute/industry to see an industrial fermenter, and other down-stream processing operations.

MEDICINAL AND ETHNOBOTANY (BOT-A-DSE-A-6-3-TH)
THEORETICAL
(Credits 4, Lectures 60)

1. **Medicinal botany:** History, scope and importance of medicinal plant, a brief idea about indigenous medicinal sciences- ayurveda, siddha and unani. Polyherbal formulations.
 14 lectures

2. **Pharmacognosy:** General account:
 2.1 Pharmacognosy and its importance in modern medicine, 2.2 Crude drugs, 2.3 Classification of drugs- chemical and pharmacological, 2.4 Drug evaluation– organoleptic, microscopic, chemical, physical and biological, 2.5. Major pharmacological groups of plant drugs and their uses.
 12 lectures

3. **Secondary metabolites:**
 3.1 Definition of secondary metabolites and difference with primary metabolites , 3.2 Interrelationship of basic metabolic pathways with secondary metabolite biosynthesis (outlines only), 3.3 Major types–terpenoids, phenolics, flavonoids, alkaloids and their protective action against pathogenic microbes and herbivores.
 14 lectures

4. **Pharmacologically active constituents:**
 Source plants (one example) parts used and uses of: 3.1 Steroids (Solasodin, Diosgenin, Digitoxin), 3.2 Tannin (Catechin), 3.3 Resins (Gingerol, Curcuminoids), 3.4 Alkaloids (Quinine, Atropine. Pilocarpine, Strychnine, Reserpine, Vinblastine), 3.5. Phenols (Sennocode and Capsaicin).
 4 lectures

5. **Ethnobotany and folk medicine:** Definition, methods of study, application, Indian scenario, national interacts, Palaeo-ethnobotany, folk medicines in ethnobotany, ethnomedicine, ethnoecology, ethnic communities of India, application of natural products to certain diseases- Jaundice, cardiac, infertility, diabetics, blood pressure and skin diseases.
 16 lectures

PRACTICAL- MEDICINAL AND ETHNOBOTANY (BOT-A-DSE-A-6-3-P)
(Credits 2)

1. Workout and chemical tests
2. Classroom performance (Laboratory Records)
3. Viva

MEDICINAL AND ETHNOBOTANY
1. Chemical tests for (a) Tannin (*Camellia sinensis / Terminalia chebula*), (b) Alkaloid (*Catharanthus roseus*).
2. Powder microscopy – *Zingiber* and *Holarrhena*.
3. Histochemical tests of (a) Curcumin (*Curcuma longa*), (b) Starch in non-lignified vessel (*Zingiber*), (c) Alkaloid (stem of *Catharanthus* and bark of *Holarrhena*).

STRESS BIOLOGY (BOT-A-DSE-A-6-4-TH)

THEORETICAL

(Credits 4, Lectures 60)

1. Plant stress- definition. Acclimation and adaptation.2 lectures
3. Stress sensing mechanism in plants: calcium modulation, phospholipid signaling.20 lectures
4. Developmental and physiological mechanisms that protect plants against environmental stress: adaptation of plants, changes in root-shoot ratios, aerenchyma development; osmotic adjustment, compatible solute production.12 lectures
5. Reactive oxygen species- production and scavenging mechanism.6 lectures

PRACTICAL- STRESS BIOLOGY (BOT-A-DSE-A-6-4-P)

(Credits 2)

1. Workout
2. Classroom performance (Laboratory Records)
3. Viva
STRESS BIOLOGY

1. Quantitative estimation of peroxidase activity in the seedlings in the absence and presence of salt stress.
2. Superoxide dismutase activity in the absence and presence of stress.
4. Comparative study of plants/seedlings subjected to different degree of stress/pollutants.
5. To study the effect of stress (salt/water/heavy metal) on seed germination and seedling growth (any commonly available specimen)

DSE-B

PLANT BIOTECHNOLOGY (BOT-A-DSE-B-5-5-TH)

THEORETICAL
(Credits 4, Lectures 60)

1. **Plant tissue culture** – Introduction:
 1.1. Basic concept and milestones, 1.2. Cellular totipotency, 1.3. Tissue culture media, 1.4. Aseptic manipulation, 1.5. Cyto-differentiation and dedifferentiation.

2. **Callus culture**:
 2.1. Callus induction, maintenance and application, 2.2. Suspension culture- introductory idea.

3. **Plant regeneration**:

4. **Haploid Culture**:

5. **Protoplast Culture**:
 5.1. Protoplast isolation and culture, 5.2. Protoplast fusion (somatic hybridization), 5.3. Significance.

6. **Plant Genetic Engineering**:
 6.1. Brief concept of different gene transfer methods, special emphasis on Agrobacterium mediated gene transfer, Role of Reporter gene, 6.2. Achievements in crop biotechnology,
environment and industry (suitable example)- pest resistant plants (BT cotton), herbicide resistance, disease and stress tolerance, transgenic crop with improved quality (flavr tomato, golden rice), role of transgenic in population degradation (super-bug), leaching of minerals, production of industrial enzymes, oil, edible vaccine.

......24 lectures

PRACTICAL- PLANT BIOTECHNOLOGY (BOT-A-DSE-B-5-5-P)
(Credits 2)

1. Field report on a visit to a tissue culture lab.
2. Classroom performance (Laboratory Records, charts/ models)
3. Viva

PLANT BIOTECHNOLOGY

1. Familiarization of basic equipments in plant tissue culture
2. Study through photographs/ charts/ models of anther culture, somatic embyogenesis, endosperm and embryo culture, micropropagation.
4. Demonstration of any tissue culture technique during visit in a plant tissue culture lab.

DSE B

HORTICULTURAL PRACTICES AND POST- HARVEST TECHNOLOGY (BOT-A-DSE-B-5-6-TH)

THEORETICAL

(Credits 4, Lectures 60)

1. Horticulture –scope, importance and branches. Role in rural economy and employment generation; importance in food and nutritional security; urban horticulture and ecoturism.

......4 lectures

2. Ornamental plants: types, classifications (annuals, perennials, climbers and trees), identification and salient features of some ornamental plants (rose, marigold, gladiolus, carnations, orchids, poppies, gerberas, tuberose, sages, cacti and succulants). Ornamental flowering trees (Indian laburnum, gulmohor, jacaranda, Lagerostemia, fishtail and Erica palms, simul, coral tree).

......4 lectures

3. Fruit and vegetable crops: production, origin and distribution; description of plants and their
economic products; management and marketing of vegetables and fruit crops; identification of some fruits and some vegetables varieties (citrus, banana, mango, chillis and cucurbits).

4. Horticultural techniques: application manures, fertilizers, nutrients and PGRs; weed controls, biofertilizers, biopesticides, irrigation methods. Hydroponics, propagation methods; vegetative (grafting, cutting, layering, budding), sexual (seed production), scope and limitations.

5. Landscaping and garden designing: planning and lay out (parks and gardens).

6. Floriculture: cut flowers, bonsai, commerce (market demand and supply), importance of flower shows and exhibitions.

7. Post harvest technology: Importance of post harvest technology in horticultural crops, evaluation of quality, traits; harvesting and handling of fruits, vegetables, cut flower; principles, methods of preservation and processing, methods of minimizing losses during storage and transportation; food irradiation- advantages and disadvantages; food safety.

8. Disease control and management: field and post harvest diseases, identification of deficiency symptoms, remedial measures and nutritional management practices; crop sanitation; IPM strategies (genetic, biological and chemical methods for pest control); quarantine practices; identification of common diseases and pest of ornamental fruits and vegetable crops.

9. Horticultural crops- conservation and management: documentation and conservation of germplasm. Role of micropropagation and tissue culture techniques; varieties and cultivars of various horticultural crops; IPR issues, national international and professional societies and sources of information on horticulture.

PRACTICAL- HORTICULTURAL PRACTICES AND POST- HARVEST TECHNOLOGY (BOT-A-DSE-B-5-6-P)

(Credits 2)

Field trip- field visits to gardens, standing crop sites, nurseries, vegetable gardens, horticultural fields at IARI/AHSI or other suitable locations and if possible to cold storage.
RESEARCH METHODOLOGY (BOT-A-DSE-B-6-7-TH)
THEORETICAL
(Credits 4, Lectures 60)

1. Basic concepts of research: research- definition and types of research (Descriptive vs. analytical, applied vs. fundamental, quantitative vs. qualitative, conceptual vs. empirical), research methods vs. methodology; literature- review and its consolidation; library research; field research; laboratory research.

2. General laboratory techniques: common calculations in botany laboratories; understanding the details on the label of reagent bottles; molarity and normality of common amino acids and bases; preparation of solutions. Dilution, percentage, molar, molal and normal solutions. Techniques of handling micropipettes; knowledge about common toxic chemicals and safety measures in their handling.

3. Data collection and documentation of observations. Maintaining of laboratory records, tabulation and generation of graphs. Imaging of tissue specimens and application of scale bars. The art of field photography.

4. Overview of biological problems: plant science research key areas, model organisms in research.

5. Methods to study plant cells/ tissue structure: whole mounts, peal mounts, squash preparations, clearing, maceration and sectioning, tissue preparation- fixation, dehydration etc., paraffin and plastic infiltration, preparation of thin and ultra-thin sections.

PRACTICAL- RESEARCH METHODOLOGY (BOT-A-DSE-B-6-7-P)
(Credits 2)

1. Experiments based on calculations

2. Plant microtechnique experiments
3. The art of imaging of samples through photomicrography and field photography
4. Poster/ power point presentation on defined topics
5. Technical writing on topics assigned.

Natural resource management (BOT-A-DSE-B-6-8-TH)
THEORETICAL
(Credits 4, Lectures 60)

Unit 1: Natural resources
Definition and types. .. 2 lectures

Unit 2: Sustainable utilization
Concept, approaches (economic, ecological and socio-cultural). 8 lectures

Unit 3: Land
Utilization (agricultural, pastoral, horticultural, silvicultural); Soil degradation and management. 8 lectures

Unit 4: Water
Fresh water (rivers, lakes, groundwater, aquifers, watershed); Marine; Estuarine; Wetlands; Threats and management strategies. 8 lectures

Unit 5: Biological Resources
Biodiversity-definition and types; Significance; Threats; Management strategies; Bioprospecting; IPR; CBD; National Biodiversity Action Plan). 12 lectures

Unit 6: Forests
Definition, Cover and its significance (with special reference to India); Major and minor Forest products; Depletion; Management. 6 lectures

Unit 7: Energy
Renewable and non-renewable sources of energy. 6 lectures

Unit 8: Contemporary practices in resource management
EIA, GIS, Participatory Resource Appraisal, Ecological Footprint with emphasis on carbon footprint, Resource Accounting; Waste management. 8 lectures

Unit 9: National and international efforts in resource management and conservation
 4 lectures
1. Estimation of solid waste generated by a domestic system (biodegradable and non-biodegradable) and its impact on land degradation.

2. Estimation of foliar dust deposition.

3. Determination of total solid in water (TDS)

4. Determination of chemical properties of soil by rapid spot test (carbonate, iron, nitrate)

6. Collection of data on forest cover of specific area.
REFERENCES

Suggested Readings

1. General studies

2. Algae
 10. Laura De Basanti : Algae, 2004

3. Microbiology
 3. Case. Funke & Tortora, G.J. Microbiology, an Introduction (Latest Ed.)
7. Singleton, P. Bacteria; in Biology, Biotechnology and Medicine (5th ed.), 1999, John Wiley & Sons Ltd.
17. Prescott & Dunn. Industrial Microbiology

4. Fungi, Lichen & Plant Pathology
2. Webster, J. Introduction to Fungi (3rd ed.), Cambridge University Press
15. Dix, N.J. and Webster, J. Fungal Ecology, Chapman & Hall
17. Sharma, P.D. the Fungi, Rastogi Publication
25. Singh, R.S. Plant diseases, Oxford & IBH Publishing Com
30. Sharma, P.D. Plant Pathology (2nd ed.), Rastogi Publications
32. Dube, H.C. An Introduction to Fungi (2005), Vikas Publishing House

5. Bryophytes
1. Parihar, N.S. Introduction to Embryophyta (Vol. 1 Bryophyta), Central Book Distributors
7. Schofield, W.B. Introduction to Bryology, 201, Blackburn Press

6. Palaeobotany and Palynology

7. Embryology

8. Pteridophytes

9. Gymnosperms
10. Ecology & Plant Geography

11. Evolution

12. Anatomy

7. Cutter, E.G. Plant Anatomy: Experiment and Interpretations, Part I & II, Edward Arnold

13. Morphology and Taxonomy of Angiosperms

14. Biochemistry & Plant Physiology

15. Pharmacognosy

16. Cell Biology, Genetics & Molecular Biology
27. Strickberg, M.W. Genetics, McMillan.

17. Plant Breeding & Biometry

18. Plant Biotechnology

13. Mascarenhas, A.F. Handbook of Plant Tissue Culture, ICAR

15. Gupta, P.K. Biotechnology & Genomes, latest Ed., Rastogi Publications

19. Natural resource management

UNIVERSITY OF CALCUTTA

SYLLABUS

FOR

THREE-YEAR B.Sc. PROGRAMME IN

BOTANY (GENERAL COURSE)

UNDER CHOICE BASED CREDIT SYSTEM

BOTANY

Syllabus for three-year B.Sc. Botany Programme

(With effect from 2018-2019)
CORE COURSES (4)

Each theoretical course of 4 credits and practical of 2 credits.

1. Plant diversity I (Phycology, Mycology, Phytopathology, Bryophytes and Anatomy) – a) Theoretical- BOT-G-CC-1-1-TH b) Practical- BOT-G-CC-1-1-P (... ... GE-1-1-TH & P)

3. Cell biology, Genetics and Microbiology – a) Theoretical- BOT-G-CC-3-3-TH b) Practical- BOT-G-CC-3-3-P (... ... GE-3-3-TH & P)

4. Plant physiology and metabolism – a) Theoretical- BOT-G-CC-4-4-TH b) Practical- BOT-G-CC-4-4-P (... ... GE-4-4-TH & P)

N.B.: The above said four core courses (CC) may be considered as GE 1, 2, 3 & 4 respectively for the honours students of other allied disciplines opting Botany as one of the general courses.

Skill enhancement courses (SEC, four courses to be selected strictly on 2 subjects out of 3 subjects opted taking 2 courses from each subject. Each general subject shall have 2 groups (A & B) of SEC papers. One paper from Group A from each of the 2 subjects to be chosen in the 3rd and 5th Semester, one paper from Group B of each of the 2 subjects to be chosen in the 4th and 6th Semesters. Each paper of 2 credits and theoretical only)

SEC A
1. Plant breeding and biometry (BOT-G-SEC-A-3/5-1)

SEC B
1. Plant biotechnology (BOT-G-SEC-B-4/6-3)
2. Mushroom culture technology (BOT-G-SEC-B-4/6-4)

Discipline specific elective courses (DSE, two courses to be selected from the list taking one each from Group A in 5th semester and one from Group B in 6th Semester. Each course comprises of theoretical component of 4 credits and practical ones of 2 credits)

DSE A

DSE B
3. Economic botany- a) Theoretical- BOT-G-DSE-B-6-3-TH, b) Practical- BOT-G-DSE-B-6-3-P
4. Horticultural practices and post harvest technology - a) Theoretical- BOT-G-DSE-B-6-4-TH, b) Practical- BOT-G-DSE-B-6-4-P
<table>
<thead>
<tr>
<th>SEMESTER</th>
<th>CORE COURSES (CC-1-4)</th>
<th>ABILITY ENHANCEMENT COMPULSORY COURSE (AEC-1&2)</th>
<th>SKILL ENHANCEMENT COURSE (SEC-1-4)</th>
<th>DISCIPLINE SPECIFIC ELECTIVE COURSE (DSE-1&2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>PLANT DIVERSITY I</td>
<td></td>
<td>AECC-1 English Communication</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PHYCOLOGY, MYCOLOGY,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHYTOPATHOLOGY,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRYOPHYTES AND ANATOMY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOT-G-CC-1-1-TH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOT-G-CC-1-1-P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER DESCIPLINES (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>PLANT DIVERSITY II</td>
<td></td>
<td>AECC-2 Environment Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PTERIDOPHYTES,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GYMNOSPERMS,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PALAEOBOTANY,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MORPHOLOGY AND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TAXONOMY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOT-G-CC-2-2-TH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOT-G-CC-2-2-P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER DESCIPLINES (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>CELL BIOLOGY, GENETICS</td>
<td></td>
<td>SEC-A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AND MICROBIOLOGY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOT-G-CC-3-3-TH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOT-G-CC-3-3-P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER DESCIPLINES (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>PLANT PHYSIOLOGY AND</td>
<td></td>
<td>SEC-B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>METABOLISM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOT-G-CC-4-4-TH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRACTICALS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BOT-G-CC-4-4-P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER DESCIPLINES (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td>SEC-A</td>
<td>DSE-A (any one from GROUP A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>THEORY & PRACTICAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OTHER DESCIPLINES (2)</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td></td>
<td>SEC-B</td>
<td>DSE-B (any one from GROUP B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>THEORY & PRACTICAL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OTHER DESCIPLINES (2)</td>
</tr>
</tbody>
</table>
SEMESTER I

CORE COURSE 1

PLANT DIVERSITY I (PHYCOLOGY, MYCOLOGY, PHYTOPATHOLOGY, BRYOPHYTES AND ANATOMY) (BOT-G-CC-1-1-TH)

THEORETICAL

(Credits 4, Lectures 60)

1. Introduction to different plant groups

2. Phycology
2.1 Diagnostic characters and examples of Cyanophyceae, Rhodophyceae, Chlorophyceae, Charophyceae and Phaeophyceae, 2.2 Classification: Criteria and system of Fritsch, 2.3. Life histories of *Chlamydomonas*, *Chara* and *Ectocarpus*, 2.4. Role of algae in the environment, agriculture, biotechnology and industry.

3. Mycology

4. Phytopathology
4.1 Symptoms - necrotic, hypoplastic and hyperplastic, 4.2 Koch's postulates, 4.3 Biotrophs and Necrotrophs, 4.4 Disease triangle, 4.5 Pathotoxins and phytoalexins (brief concept), 4.6 Symptoms, causal organism, disease cycle and control measures of plant diseases (Late blight of potato, Brown spot of Rice, Stem rot of jute).

5. Bryophytes
5.1 Unifying features of archaegoniates and transition to land habit, 5.2 Amphibian nature of bryophytes, 5.3 Diagnostic characters and examples of Hepaticopsida, Anthocerotopsida and Bryopsida (Proskauer 1957), 5.4 Life histories of *Marchantia* and *Funaria*, 5.5 Ecological and economic importance.

6. Anatomy
6.1 Stomata - Types (Metcalfe & Chalk), 6.2 Anatomy of root, stem and leaf of monocots and dicots, 6.3 Stelar types and evolution, 6.4 Secondary growth – normal in dicot stem and anomaly in stem of *Tecoma* & *Dracaena*.
1. **Work out**: Microscopic preparation, drawing and labeling of *Chlamydomonas*, *Chara*, *Ectocarpus*, *Rhizopus* and *Ascobolus*

2. **Anatomical studies (following double staining method) of**: 2a. Stem- *Cucurbita*, sunflower and maize. 2b. Root- *Colocassia*, gram and orchid. 2c. Leaf- *Nerium*

3. **Identification with reasons**: 3a. Cryptogamic specimens (macroscopic/microscopic as prescribed in the theoretical syllabus. 3b. Pathological specimens (herbarium sheets) of Late blight of potato, Brown spot of rice and stem rot of jute.

4. **Laboratory records**: Laboratory note books (regularly signed) and slides (prepared in class) are to be submitted at the time of Practical Examination. Regular attendance in the class must be credited.

5. Atleast one local excursion to be conducted to give an idea of plant diversity, habitat of algae and fungi

SEMESTER II

CORE COURSE 2

PLANT DIVERSITY II (PTERIDOPHYTES, GYMNOSPERMS, PALAEOBOTANY, MORPHOLOGY AND TAXONOMY) (BOT-G-CC-2-2-TH)

THEORETICAL

(Credits 4, Lectures 60)

1. **Pteridophytes**
 1.1 Diagnostic characters and examples of Psilophyta, Lycophyta, Sphenophyta & Filicophyta (Gifford & Foster 1989). 1.2 Life histories of *Selaginella* and *Pteris*, 1.3 Economic importance.

 12 lectures

2. **Gymnosperms**
 2.1 Progymnosperms (brief idea), 2.2 Diagnostic characters and examples of Cycadophyta, Coniferophyta and Gnetophyta (Gifford & Foster 1989), 2.3 Life histories of *Cycas* and *Pinus*, 2.4 Williamsonia (reconstructed), 2.5 Economic importance of Gymnosperms.

 12 lectures

3. **Paleobotany & Palynology**
 3.1 Fossil, fossilization process and factors of fossilization, 3.2 Importance of fossil study. 3.3 Geological time scale, 3.4 Palynology - Definition, spore & pollen (brief idea), Applications.

 10 lectures

4. **Angiosperm Morphology**
 4.1 Inflorescence types with examples, 4.2 Flower, 4.3 Fruits and seeds- type and examples.

 12 lectures

5. **Taxonomy of Angiosperms**
 5.1 Artificial, Natural and Phylogenetic systems of classification with one example each, 5.2 Diagnostic features of following families- *Malvaceae*, *Leguminosae* (Fabaceae), *Cucurbitaceae,
Rubiaceae, Compositae (Asteraceae), Solanaceae, Acanthaceae, Labiatae (Lamiaceae), Orchidaceae, Gramineae (Poaceae).

.......14 lectures

PRACTICAL- PLANT DIVERSITY II (PTERIDOPHYTES, GYMNOSPERMS, PALAEOBOTANY, MORPHOLOGY AND TAXONOMY) (BOT-G-CC-2-2-P)
(Credits 2)

1. Dissection, drawing and labelling, description of angiosperm plants and floral parts, floral formula and floral diagram, identification (family) from the following families: Leguminosae (Fabaceae), Malvaceae, Solanaceae, Labiatea (Lamiaceae), Acanthaceae.

2. Identification with reasons:
Macroscopic specimens of Selaginella and Pteris, male and female strobilus of Cycas and Pinus, Anatomical slides (stellar types, transfusion tissue, sieve tube, sunken stomata, lenticels), inflorescence types.

3. Spot identification of the following Angiospermic plants (scientific names and families): Sida rhombifolia (Malvaceae), Abutilon indicum (Malvaceae), Cassia sophera (Fabaceae), Tephrosia halimtonii (Fabaceae), Crotolaria palida (Fabaceae), Coccinia grandis (Cucurbitaceae), Solanum indicum (Solanaceae), Nicotiana plumbagenifolia (Solanaceae), Leucas aspera (Lamiaceae), Leonurus sibiricus (Lamiaceae), Parthenium hysterophorus (Asteraceae), Tridax procumbense (Asteraceae), Eclipta prostrate (Asteraceae), Eragrostis tenella (Poaceae), Chrysopogon aciculantis (Poaceae), Eleusine indica (Poaceae), Vanda taesellata (Orchidaceae).

4. Laboratory records: Laboratory note books (regularly signed) and slides (prepared in class) are to be submitted at the time of Practical Examination. Regular attendance in the class must be credited.

5. Field excursion: Local Excursions (at least two including one to Acharya Jagadish Chandra Bose Botanic Garden, Shibpur, Howrah)

6. Field Records: Field note book and 15 herbarium sheets of common Angiospermic weeds are to be prepared and submitted at the time of Practical Examination. Regular attendance in the class must be credited.

SEMESTER III

CORE COURSE 3
CELL BIOLOGY, GENETICS AND MICROBIOLOGY (BOT-G-CC-3-3-TH)
THEORETICAL
(Credits 4, Lectures 60)

1. Cell Biology and Genetics
1.1 Ultrastructure of nuclear envelope, nucleolus and their functions, 1.2 Molecular organisation of metaphase chromosome (Nucleosome concept).
2. Chromosomal aberrations- 2.1 deletion, duplication, inversion & translocation, 2.2 Aneuploidy & Polyploidy-types, importance and role in evolution.

3. Central Dogma, 3.1 Transcription and Translation.

5. Linkage group and Genetic map (three-point test cross).

6. Mutation – 6.1 Point mutation (tautomerisation; transition, transversion and frame shift), 6.2 Mutagen-physical and chemical.

2. Microbes
2.1 Viruses- Discovery, general structure, replication (general account), DNA virus (T-phage); Lytic and lysogenic cycle, RNA virus (TMV); Economic importance; 2.2 Bacteria- discovery, general characteristics and cell structure; reproduction- vegetative, asexual and recombination (conjugation, transformation and transduction); Economic importance.

RACTICAL- CELL BIOLOGY, GENETICS AND MICROBIOLOGY (BOT-G-CC-3-3-P)
(Credits 2)

1. Cell Biology:
Staining (Aceto-orcein) and squash preparation of onion root tip: study of mitotic stages. Determination of mitotic index (from onion root tip).

2. Microbiology:
Workout gram staining (curd/any natural source)

3. Identification with reasons:
Cytological slides of different mitotic and meiotic stages. Different forms of bacteria (Coccus, Bacillus, Spiral)

4. Laboratory Records: Laboratory note books (regularly signed) and slides (prepared in class) are to be submitted at the time of Practical Examination. Regular attendance in the class must be credited.
SEMESTER IV

CORE COURSE 4
PLANT PHYSIOLOGY AND METABOLISM (BOT-G-CC-4-4-TH)
THEORETICAL (Credits 4, Lectures 60)

1. Proteins
1.1 Primary, secondary and tertiary structure, 1.2 Nucleic acid- DNA structure, RNA types, 1.3 Enzyme- Classifications with examples (IUBMB), Mechanism of action.

2. Transport in plants
2.1 Ascent of sap and Xylem cavitation , 2.2 Phloem transport and source-sink relation.

3. Transpiration
3.1 Mechanism of stomatal movement, significance.

4. Photosynthesis
4.1 Pigments, Action spectra and Enhancement effect, 4.2 Electron transport system and Photophosphorylation, 4.3 C3 and C4 photosynthesis, CAM- Reaction and Significance.

5. Respiration
5.1 Glycolysis & Krebs cycle— Reactions and Significance, 5.2 ETS and oxidative phosphorylation.

6. Nitrogen metabolism
6.1 Biological dinitrogen fixation, 6.2 Amino acid synthesis (reductive amination and transamination).

7. Plant Growth regulators
7.1 Physiological roles of Auxin, Gibberellin, Cytokinin, Ethylene, ABA.

8. Photoperiodism (Plant types, Role of phytochrome and GA in flowering) and Vernalization.

PRACTICAL- PLANT PHYSIOLOGY AND METABOLISM (BOT-G-CC-4-4-P)
(Credits 2)

Plant Physiology:
i) Experiment on Plasmolysis.
ii) Measurement of leaf area (graphical method) and determination of transpiration rate per unit
area by weighing method.
iii) Imbibition of water by dry seeds - proteinaceous and fatty seeds.
v) Evolution of CO2 during aerobic respiration and measurement of volume.

SEC A
PLANT BREEDING AND BIOMETRY (BOT-G-SEC-A-3/5-1)
(Credits 2, Lectures 30)

1. Plant breeding:
 1.1 Introduction and objective, 1.2 Techniques of hybridisation.

2. Mass and Pure line selection:
 2.1 Procedure, 2.2 Advantages and limitations.

3. Heterosis and hybrid seed production.

4. Role of mutation, polyploidy, distant hybridization and role of biotechnology in crop improvement.

5. Biometry:
 5.1 Measures of central tendency (Mean, Median and Mode), 5.2 Standard error and standard deviation, 5.3 Test of significance: Chi-square test for goodness of fit.

BIOFERTILIZERS (BOT-G-SEC-A-3/5-2)
(Credits 2, Lectures 30)

1. Biofertilizers: General account about microbes used as biofertilisers; Rhizobium-identification, mass multiplication. Actinorrhizal symbiosis.

2. Azospirillum- identification, mass multiplication, associative effect of different microorganisms. Azotobacter and crop response to Azotobacter inoculums.

4. Mycorrhizal association: 4.1 Types of Mycorrhizal association- Brief idea, 4.2 Its influence on growth and yield of crop plants.
5. **Organic farming**: 5.1 Green manuring and organic fertilizers, 5.2 Biocompost and vermicompost- making methods and field applications. 5.3 Recycling of biodegradable municipal, industrial and agricultural wastes.

SEC B

PLANT BIOTECHNOLOGY (BOT-G-SEC-B-4/6-3)

(Credits 2, Lectures 30)

1. **Plant tissue culture** - 1.1 Introduction and basic concepts, 1.2 Cellular potency, 1.3 Callus culture and plant regeneration.

2. **Micropropagation** - 2.1 Somatic embryogenesis and artificial seed.

3. Protoplast culture and its application.

4. **Recombinant DNA technology** - 4.1 Recombinant DNA, 4.2 Restriction enzymes, 4.3 Plasmids as vectors.

5. Gene cloning (basic steps).

6. **Achievements in crop biotechnology** - 6.1 Pest resistant plant (Bt cotton), 6.2 Transgenic crops with improved quality (flavr tomato and golden rice).

MUSHROOM CULTURE TECHNOLOGY (BOT-G-SEC-D-4/6-4)

(Credits 2, Lectures 30)

1. **Mushroom** - nutritional and medicinal value of mushrooms. Poisonous mushrooms.

2. Cultivation techniques/ technology of edible mushrooms in India: *Volvarella volvacea, Pleuretus citrinopyrineatus, Agaricus bisporus*.

3. **Storage** - short term and long term, storage, drying.

4. **Food preparation** - types of foods prepared from mushroom. Cost and benefit ratio.

5. **Research centres** - national and regional.
DSE A (Group A)
PHYTOCHEMISTRY AND MEDICINAL BOTANY (BOT-G-DSE-A-5-1-TH)
THEORETICAL
(Credit 4, Lectures 60)

 14 lectures

2. Pharmacognosy- 2.1 Scope and its importance, 2.2 Primary metabolites, 2.3 Secondary metabolites- alkaloids, terpenoids, phenolics and their functions.

 10 lectures

3. Organoleptic evaluation of crude drugs.

 10 lectures

4. Pharmacologically active constituents: Source plants (one example), parts used and uses of: 4.1 Steroids (Diosgenin, Digitoxin), 4.2 Tannin (Catechin), 4.3 Resins (Gingerol, Curcuminoids), 4.4 Alkaloids (Strychnine, Reserpine, Vinblastine), 4.5 Phenols (Capsaicin).

 6 lectures

5. Ethnobotany and folk medicine: 5.1 Brief idea, 5.2 Applications of ethnobotany, 5.3 Application of natural product to certain diseases- Jaundice, Cardiac and Diabetics.

 20 lectures

PRACTICAL- PHYTOCHEMISTRY AND MEDICINAL BOTANY (BOT-G-DSE-A-5-1-P)
(Credit 2)

1. Preparations of solution and buffers
3. Qualitative test for proteins and carbohydrates, reducing and non reducing sugar (glucose, fructose and sucrose)
4. Tests (chemical) for tannin and alkaloid
5. Identification of medicinal plants (list to be provided)
6. Field study (local) and listing of medicinal plants. Records to be substantiated with photographs and description.
1. Natural resources- definition and types.
 2 lectures

2. Sustainable utilization- concept, approaches (economic, ecological and socio-cultural).
 10 lectures

3. Land utilization. Soil degradation and management.
 8 lectures

 10 lectures

5. Biological resources, biodiversity- definition and types. Significance, threats and management strategies.
 10 lectures

6. Forests- definition, cover and its significance (with special reference to India). Major and minor forest products.
 8 lectures

 8 lectures

8. EIA and waste management.
 4 lectures

PRACTICAL- NATURAL RESOURCE MANAGEMENTS (BOT-G-DSE-A-5-2-P)
(Credits 2)

1. Estimation of solid waste generated by a domestic system (biodegradable and non-biodegradable) and its impact on land degradation.
2. Measurement of dominant woody species by DBH (diameter at breast height)
3. Study of community structure by Quadrat method and determination of minimal size of quadrat, frequency density and abundance of components to be done during field visit.
4. Measurement of dissolved O\textsubscript{2} by azide modification of Winkler’s method.
5. Determination of chemical properties of soil by rapid spot test (carbonate, iron, nitrate)
1. Origin of cultivated plants: 1.1 Concepts of centres of origin and their importance with reference to Vavilov’s work.12 lectures

2. Rice- origin, morphology and uses.12 lectures

3. Legumes: General account with special reference to Vigna.8 lectures

4. Beverages: Tea- morphology, processing and uses.12 lectures

5. Study of the following economically important plants (Scientific names, families, parts used and importance): 5.1 Cereals- Rice, wheat, 5.2 Pulses- Mong, gram, 5.3 Spices- Ginger, cumin, 5.4 Beverages- Tea, coffee, 5.5 Medicinal plants- Cinchona, neem, Ipecac, Vasaka, 5.6 Oil yielding plants- Mustard, groundnut, coconut, 5.7 Vegetables- Potato, raddish, bottle groud, cabbage, 5.8 Fibre yielding plants- Cotton, jute, 5.9 Timber yielding plants- Teak, Sal 5.10 Fruits- Mango, apple, 5.11 Sugar yielding plant- Sugarcane.16 lectures

PRACTICAL- ECONOMIC BOTANY (BOT-G-DSE-B-6-3-P)
(Credits 2)

1. Study of economically important plants (rice/jute/ tea) through herbarium specimens and field study.
2. Study of cultivation practices in field and submission of report.
3. Study of local economically important plants and submission of report with photographs.

HORTICULTURAL PRACTICES AND POST HARVEST TECHNOLOGY (BOT-G-DSE-B-6-4-TH)
THEORETICAL
(Credits 4, Lectures 60)

1. Horticulture- role in rural economy and employment generation. Urban horticulture- its scope and importance.6 lectures

2. Ornamental plants- identification and salient features of some ornamental plants (rose, marigold, gladiolus, gerberas, tube rose, carnations, cacti and succulents). Ornamental flowering trees (Gulmohor, Lagerstromia, Shimul, Coral tree and jacaranda).
3. Identification of some fruits and vegetable plants- Citrus, Banana, Papaya, Mango, Jackfruit, Chillies and cucurbits. Fruit processing- scope and benefits.

6. Disease control and management- field and post harvest diseases of common crops. Crop sanitation, quarantine practices. Identification of common diseases and pest of fruits and vegetable crops.
REFERENCES

Suggested Readings

1. **General studies**

2. **Algae**

3. **Microbiology**
 3. Case. Funke & Tortora, G.J. Microbiology, an Introduction (Latest Ed.)

4. Fungi, Lichen & Plant Pathology
10. Sharma, P.D. the Fungi, Rastogi Publication
15. Rangaswami, G.K. & Mahadevan, A. Diseases of Crop Plants in India, Prentice Hall
18. Dube, H.C. An Introduction to Fungi (2005), Vikas Publishing House

5. Bryophytes
1. Parihar, N.S. Introduction to Embryophyta (Vol. 1 Bryophyta), Central Book Distributors

6. Palaeobotany and Palynology

7. Embryology

8. Pteridophytes

9. Gymnosperms

10. Ecology & Plant Geography

11. Evolution

12. Anatomy
5. Tayal, M.S. Plant Anatomy, Latest Ed., Rastogi Publications
7. Morphology and Taxonomy of Angiosperms
17. Prain, D. Bengal Plants (Vol I & II), Bishen Singh Mahendra Pal Singh.

14. Biochemistry & Plant Physiology

15. Pharmacognosy/ Medocinal Botany
2. Trivedi P.C. 2006. Medicinal Plants: Ethnobotanical approach, Agrobios India

16. Cell Biology, Genetics & Molecular Biology

17. Plant Breeding & Biometry

18. Plant Biotechnology

19. Resource methodology

20. Biofertilizers

21. Mushroom culture technology