Admission to the Ph.D. Programme in Statistics: 2016-2017

Procedure:

1. The conditions for eligibility will be guided overall by the rules specified in the notification regarding Regulations for the Degree of Doctor of Philosophy (Ph.D.) of the University of Calcutta (http://www.caluniv.ac.in/PhD-Dlit-Dsc/Ph.D.Regulations-2016.pdf)

2. **Eligibility:** Candidates with M.Sc. or equivalent degree in Statistics and allied subjects from any UGC recognized University/Institute with 55% marks in aggregate (SC / ST/OBC with 50% marks) are eligible to apply for admission in the Ph.D. programme.

 (a) In case of candidates from other Universities, admission for the Ph.D. Programme will proceed after determination of equivalence by the relevant University body and fulfillment of the admission criteria.

 (b) Foreign students will be required to produce clearance from the government of India and /or other appropriate authorities, if any, for admission to the Ph.D. Programme. Enrolment in the Ph. D. Programme may be allowed to only such foreign nationals as have obtained and are holding research visa.

 (c) The non-creamy layer certificate has to be submitted by OBC candidates seeking admission under the reserved category.

3. The admission procedure consists of a written test followed by an interview for candidates successful in the same. Those who have cleared UGC/CSIR (JRF) examinations/ NET / SET (Mathematical Sciences) / GATE (Mathematics) or hold DST INSPIRE Fellowship/ Teachers’ Fellowship or have obtained M.Phil. degree in Statistics and allied subjects or M. Tech. (QR&OR) degree of ISI prior to the application deadline will be exempted from the written examination but will have to appear in the interview.

4. Number of seats: 15

5. Reservations will be followed as per West Bengal Higher Educational Institutions (Reservations in Admissions) Rules, 2013.

Date of Advertisement :

Last date of submission of application form : January 30, 2017
Date of common written test : February 15, 2017 (12 noon - 3 p.m.)

Result of common written test : February 28, 2017

Date of Interview : March 7, 2017 (from 12 noon)

Date of publication of selection list : March 15, 2017

Application forms may be downloaded from the university website

http://www.caluniv.ac.in/admission/CU_RET_Form.pdf.

The filled in application form together with self attested copies of academic documents and reservation certificates should be submitted at the departmental office between 12 noon and 3:00 p.m. on all working days within the above mentioned deadline, after payment of the prescribed application fee of Rs. 100/-.

Application Deadlines:

Please note that candidates who are eligible for waiver of the written test are also required to complete and submit the application form by the above deadline.

Structure of the written examination and subsequent process:

1. There will be 24 short answer type questions of 5 marks each out of which one has to answer 15 questions.

2. The qualifying marks for Entrance Test will be 50%.

3. Candidates successful in the written examination would have to compete with other eligible candidates who have already cleared NET / SET / GATE / M. Phil / M. Tech. (QR&OR) at the interview stage. The list of finally selected candidates would be posted in the University website and Departmental Notice Board.

4. Candidates selected for the final interview will be required to submit by a specified date a Statement of Purpose (SoP) that should at least contain his/her areas of interest before the interview. However, the selection committee may, at its discretion, require a candidate to opt for a topic/area other than his/her initial choice before admitting him/her into the Ph.D. programme. The final date for submitting the SoP will be announced along with the intimation for the interview.

Detailed Syllabus for common M.Phil-PhD Entrance Examination:
Real Analysis:

Probability

Linear Algebra and Linear Programming

Vectors and Matrices: Vector spaces and subspaces, Linear dependence and independence, span, basis, orthogonality and orthonormality.

Matrix algebra:

Linear programming: Graphical Solution and Simplex Algorithm

Sampling Distributions

Non-central x^2, t & F distributions – definitions and properties. Distribution of quadratic forms – Cochran’s theorem.

Large Sample Theory

Scheffe's theorem, Slutsky's theorem. Asymptotic normality, multivariate CLTs, delta method. Glivenko-Cantelli Lemma
Asymptotic distributions of sample moments and functions of moments, Asymptotic distributions of Order Statistics and Quantiles. Consistency and Asymptotic Efficiency of Estimators, Large sample properties of Maximum Likelihood estimators. Asymptotic distributions and properties of Likelihood ratio tests, Rao’s test and Wald’s tests in the simple hypothesis case.

Statistical Inference

Linear Models

Regression Analysis

Binary data and Count data: ungrouped and grouped. Polytomous data.

Over dispersion, Quasi-likelihood.

Models with constant coefficient of variation, joint modeling of mean and variance, Generalized additive models.

Discrete longitudinal data - generalized linear marginal models, GEE for marginal models, Generalized linear subject specific models and transition models.

Design of Experiments

Block Designs: Connectedness, Orthogonality, Balance and Efficiency; Resolvable designs; Properties of BIB designs, Designs derived from BIB designs.

Intrablock analysis of BIB, Lattice and PBIB designs, Row column designs, Youden Square designs; Recovery of inter-block information in BIB designs; Missing plot technique.

Construction of mutually orthogonal Latin Squares (MOLS); Construction of BIB designs through MOLS and Bose’s fundamental method of differences.

Factorial designs: Analysis, Confounding and balancing in Symmetric Factorials.

Sample Surveys

Probability sampling from a finite population – Notions of sampling design, sampling scheme, inclusion probabilities, Horvitz-Thompson estimator of a population total. Basic sampling schemes – Simple random sampling with and without replacement, Unequal probability sampling with and without replacement, Systematic sampling. Related estimators of population total/mean, their variances and variance estimators – Mean per distinct unit in simple random with replacement sampling, Hansen-Hurwitz estimator in unequal probability sampling with replacement, Des Raj and Murthy’s estimator (for sample of size two) in unequal probability sampling without replacement.

Bayesian Analysis

Different Priors and related Posteriors
Estimation, testing and prediction for Univariate Normal distribution with known / unknown mean and / or variance.
Hierarchical and Empirical Bayes under normal setup.
Prior and posterior analysis in Generalized linear models

Decision Theory
Risk function, Admissibility of decision rules, Complete, essentially complete, minimal complete and minimal essentially complete classes. Essential completeness and completeness of class of rules based on sufficient statistic and the class of nonrandomized rules for convex loss

Resampling Techniques
Empirical distribution function and its properties
Jackknife and Bootstrap for estimating bias and standard error.
Consistency of the Jackknife variance estimate in an iid setup.
Bootstrap confidence intervals.

Stochastic Processes
Poisson process. Renewal Theory: renewal processes, renewal function, elementary renewal theorem, applications, Blackwell's theorem and key renewal theorem (statements), applications, alternating renewal processes, applications to limiting excess and age.

Time Series Analysis
Box-Jenkins Models – identification, estimation and diagnostic checking.
Volatility – ARCH, GARCH models.

Multivariate Analysis:
Multivariate normal distribution and its properties- marginal and conditional distributions. Random sampling from a multivariate normal distribution- UMVUE and MLE of parameters,
joint distribution of sample mean vector and SS-SP matrix; Wishart distribution and its properties. Distribution of sample correlation coefficients, partial and multiple correlation coefficients, partial regression coefficient and intraclass correlation coefficient. Distributions of Hotelling’s T^2 and Mahalanobis’ D^2 statistics—their applications in testing and confidence set construction. Multivariate linear model, MANOVA for one-way and two-way classified data.

Applied Multivariate Analysis

Clustering: Hierarchical clustering for continuous and categorical data—different choices of proximity measures, Agglomerative and Divisive algorithms. K-means clustering—optimum choice of the number of clusters.

Classification and discrimination procedures: Discrimination between two known populations—Bayes, Minimax and Likelihood Ratio procedures. Discrimination between two multivariate normal populations. Sample discriminant function. Likelihood ratio rule. Tests associated with discriminant function, Probabilities of misclassification and their estimation. Classification of several populations. Fisher’s method for discriminating among several populations.

Principal Component Analysis: Population and sample Principal components and their uses. Plotting techniques, Large sample inferences.

Factor Analysis: The orthogonal factor model, Estimation of factor loading, Factor rotation, Estimation of Factor scores, Interpretation of Factor Analysis.

Canonical Correlations: Population and sample canonical variables and canonical correlations and their interpretations. Plotting techniques, Large sample inferences.