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Abstract: This study aims at investigating the existence of long memory property in Indian stock
market. We have chosen two leading indices SENSEX and NIFTY as proxy for the same. Standard
econometric tests have been used including Rescaled-Range (R/S) analysis and its modified form in
time domain and the Spectral Regression Method in the frequency domain. The resulis indicate
presence of short memory in return series and long memory for volatility. The study also found the
existence of Taylor’s effect in Indian stock market. The findings are consistent in all the tests and are
in line with the stylized facts of financial time series.
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1. Introduction

The coverl presence of stochastic long memory in stock market retums has been an
imperative issue of both theoretical and empirical investigation. It is well known and accepted
that some of the human and natural phenomena show long memory and there exists huge
publications relating to long memory in areas such as finance (e.g. Lo, 1997), econometrics
(e.g. Robinson, 2003), internet modelling (e.g. Karagiannis et al., 2004), hydrology (e.g.
Painter, 1998), climate studies (e.g. Varotsos and Kirk-Davidoff, 2006), linguistics (e.g.
Alvarez-Lacalle et al., 2006) or DNA sequencing (e.g. Karmeshu and Krishnamachari, 2004).
Long range dependence and long memory are synonymous notions that have far reaching
implications. Presence of stochastic long memory in stock market returns has a direct impact
on the world of market efficiency and can pose a serious challenge to the proponents of
random walk behavior of the stock retumns. The studies related to long range dependence
includes detection of long memory in the data, statistical estimation of parameters of long
range dependence, limit theorems under long range dependence, simulation of long memory
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processes, and many others. Hurst (1951) possibly inspired the development of statistical
long-memory processes. He proposed a method (Rescaled-Range analysis) for the
quantification of long-term memory which is based on estimaling a parameter for the scaling
behaviour of the range of partial sums of the variable under consideration. Some early studies
in long memory process in finance were carried out by Mandelbrot (1971, 1972) and
Mandelbrot and Wallis (1969) who suggested thal in the presence of long memory, arbitrage
opportunilies may exist as new market information cannot be absorbed quickly and
martingale models of asset prices may not be justified. Mandelbrot (1997) contains many of
the early papers that Mandelbrot wrole on the application of the Hurst exponent in {inancial
time series. Since those days, the applicalion of the long memory processes in economy has
been exlended from macroeconomics to finance. A good survey of the econometric approach
1o long-memory is given in Baillie (1996).

The study of possible long-memory properties of time series in finance is even more
widespread. There has been a long-standing debale as 1o whether or not assel prices have
long-memory properties. In case of long memory, linear pricing models and statistical
inferences about asset pricing models based on standard testing procedures may not be
appropriate (Yajima, 1985). Several authors have claimed that the time series of slock returns
for stock prices or indices display long-memory (Mandelbrot, 1971; Greene and Fielitz,
1977). Lo (1991) re-examined these results and showed that the stalistical Rescaled-Range
(R/S) test used by Mandelbrot (1971) and Greene and Fielitz (1977) is too weak and unable to
distinguish between long and short memory. By introducing a modified R/S test, Lo
concluded that daily stock returns do not display long-memory properties. However,
Willinger et al. (1999) showed that the modified R/S test leads (o the rejection of the nuli
hypothesis of shori-memory when applied to synthetic time series with a low degree of long-
memory. Since financial data typically display low degree of long-memory, they claim that
the result of Lo (1991) may not be conclusive.

It is more widely accepted (though still not entirely uncontroversial) that the volatility of
prices is a long-memory process. It is well known that asset price retums contain little serial
correlation, in accord with the efficient markets hypothesis; however, their volatilities exhibit
a much richer structure. There is a lot of evidence showing that conditional volatility of
returns on assel prices displays long memory or long range dependence. Andersen and
Bollerslev (1997), Ding et al. (1993) and Breidt et al. (1998) find evidence of long-memory
stochastic volatility in stock returns, and Harvey (1993) finds evidence for this in exchange
rates. These results led 1o the development of altermate models for volatility, such as
Fractionally Integrated Generalized Auloregressive Conditional ~Heteroskedasticity
(FIGARCH) model.
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In finance, the discussion as to whether or not the stock market prices display long memory
properties still continues since this fact has important consequences on the capilal markel
theories. So, if stock prices show long memory this means that predictability is not a dream
but a possibility. The main implication of this circumstance is that an efficient market
hypothesis is clearly rejected because stock market prices do not follow a random walk. The
presence of long memory dynamics in asset prices would provide evidence against the weak
form of market efficiency as it implies nonlinear dependence in the first moment of the
distribution and hence a potentially predictable component in the series dynamics. It would
also raise issues regarding linear modeling, forecasting, statistical testing of pricing models
based on standard statistical methods, and theoretical and econometric modeling of asset
pricing.

In financial econometrics lilerature, different power transformations of absolute returns of
various financial assets have been found to display different magnitudes of sample
autocorrelations, a property referred to as the ‘Taylor effect’. Taylor (1986) observed that the
empirical sample autocorrelations of absolute returns are usually larger than those of squared
retums. A similar phenomena is observed by Ding el al. (1993) and Granger and Ding (1994,
1995, 1996). Granger and Ding (1995) referred this phenomenon as the “Taylor effect” and
since then this has been an area of interest in many studies.

This study aims at investigating the existence of long memory property in Indian stock
market. Studies in long range dependence in Indian stock market are very limited. Nath
(2001) found evidence of long memory property in the Indian stock market using data from
BSE500 stock index. We have chosen two leading indices SENSEX and NIFTY as proxy for
the same. The study also explores the existence of Taylor effect in Indian stock market.

In the present paper section 2 gives the definition of long memory process. Section 3 consists
of the different methodologies used 1o test long memory process. Section 4 is completely
devoted to the data analysis and findings of the paper. Finally, seclion 5 narates the
conclusion drawn from data analysis and findings.

2. Definition of Long Memory

The long memory describes the higher order correlation structure of a series. If a time series y,
is a long-memory process or exhibits long-range dependence, there is persistent temporal
dependence between observalions widely separated in time. Such series exhibits
hyperbolically decaying autocorrelations and low frequency distributions. Mathematically, if
A= cov (¥, yss), 5=0, £1, +2,.... and there exist constants k and a, ae(0,])such that
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li_’reklss“ =1 then y,is a long-memory process. A long memory process can be regarded as a

halfway between stalionary and unit root process. Like a stationary process, it is also a mean
reverting process with a finite memory, i.e., it comes back to equilibrium afier experiencing a
shock. But unlike an autoregressive stalionary process, it shows a much slower hyperbolic
rate of decay rather than exponential, and the process takes much larger time to adjust back to
equilibrium. When a time series have unit root at level but its first-differences are stationary,
it is said to be I(1) process (integrated of order one). A stalionary process is said to be I(0)
process (integrated of order zero). Using the same notation, long memory process is I(d)
process, where d lies between 0 and 1, i.e., a fraction. Hence long memory is also known as
“fractionally integraled process’. In (he frequency domain, long memory financial time series
have typical spectral power concentration near zero or at low frequencies and then it is
declining exponentially and smoothly as the [requency increases (Granger, 1966).

3. Methodology for Testing Long Memory Processes

The empirical determination of the long-memory property of a time series is a difficult
problem. The basic reason for this is that the strong autocorrelation of long-memory processes
makes statistical fluctuations very large. Thus tests for long-memory tend to require large
quantities of data. In this paper we tested the stationary properties of all the data series using
Dickey and Fuller (1979) (ADF) test, Phillips-Perron (1988) (PP) test and Kwiatkowski, et al.
(1992) (KPSS) test. We have tried 1o capture the long memory property of financial data
using Rescaled-Range (R/S) analysis introduced by Hurst (1951), modified Rescaled-Range
(R/S) analysis introduced by Lo (1991) and the spectral regression method suggested by
Geweke and Porter-Hudak (1983). The above lests were applied on return series, absolute
return series and squared retumn series. The referred methods and the definition of long
memory are detailed below.

3.1 Rescaled-Range (R/S) Analysis

R/S analysis provides a measure of long range dependence based on the evaluation of the
Hurst’s exponent of stalionary time series introduced by English hydrologist H.E. Hurst in
1951. The Hurst exponent was built on Einstein’s contributions regarding Brownian motion
of physical particles and is frequently used to detect long memory in time series. R/S analysis
in economy was introduced by Mandelbrot (1971, 1972, 1997) who argued that this
methodology was superior 1o the autocorrelation, the variance analysis and to the spectral
analysis. Let X(1) be the price of a stock on a time t and r(1) be the logarithmic return denoted
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by r(t)= ln(h). The R/S statistic is the range of partial sums of deviations of times series
Xl

from its mean, rescaled by its standard deviation. Hence, if r(1), 1(2),... r(n) denotes asset
. 1< P .
returns and 7, represents the mean retumn given by 7, =—Zr(l) , where ‘n’ is the time span
pal

considered, the rescaled range statistic is given by

R
(EJ,'_[E‘&"Z(’(’) )= mmZ(r(t) r)] ()
Where o, is the maximum likelihood estimate of sample standard deviation:

o? =li(r(l)—7n)1 . The first term in the bracket is the maximum of the partial sums of the
n

=

first k deviations of r(t) from the sample mean, which is nonnegative. The second term in the
bracket is the corresponding minimum of the partial sums, which is nonposilive. Therefore,
the difference of these two quantities, called “range” is always nonnegative, so that the

rescaled range, (%) 2 0. The advantage of the classical R/S analysis is that the results are

reliable regardless of whether the distribution of the series is normal or nonnormal. The null
hypothesis of the test is that there is no long-range dependence in the series. This test is
perforfned by calculating the confidence intervals with respect to some significance level, and
to see whether the rescaled range statistic lies in or outside the desired interval. The critical
values for the above two tests are given in Lo, 1991, Table II.

A drawback of the R/S analysis is that its measure of long range dependence is affected by
short range dependence that may be presented in the financial data. Hence we consider
estimating modified R/S statistic proposed by Lo (1991).

3.2 Modified Rescaled-Range (R/S) Analysis

The modified R/S test suggested by Lo (1991) for long memory examines the null hypothesis
of a short memory and possibly heteroskedastic process against long memory alternatives.
Lo's modified version of the statislic takes account of short-range dependence by performing
a Newey and West (1987) correction to derive a consistent estimate of the long-range
variance of the time series. Lo’s modified R/S statistic, denoted by Q. is defined as:

Q.= D_(q)[lm“Z('(') 7)- man(r(r) r):| )

32



J.K. Das and Sharad Nath Bhattacharya
where o?(g)is the Newey and West (1987) estimate of long run variance of the series
1& - z
defined as o3(g)=—D (r()-T,)’'+2) @,(q)y;, where 7, represents the sample
e ja

autocovariance of order j, and w,(g)represents the weights applied to the sample

aulocovariance at lag j (1,2,...q). @, (q) is defined as: w,(q)= -Ll
q+

The second term in the long run variance equation intended to capture the short term

dependence. The lag length q used to estimate the heteroskedasticity and autocorrelation

corrected (HAC) slandard deviation is extremely crucial for modified R/S test of long

memory. We have used bandwidth selection procedures suggested by Lo (1991) to find the

lag length.
3.3 The Spectral Regression Method

A stationary long memory process can be characterized by the behaviour of the spectral
density f(A) function which (akes the form F(X)Dc|l-e'“|>u, as A—> Owithd =0, where

c#0, dis the long memory parameter (or [ractional differencing parameter) and 0 <|d| <0.5.
In order to estimate the [ractional dilferencing estimator d, Geweke and Porter-Hudak (GPH)
(1983) proposed a semi-parametric method of the long memory parameter d which can
capture the slope of the sample spectral density through a simple OLS regression based on the
periodogram, as follows:

logl(l)=|3°—dlog(4sin2(}\,/2))+uj, ji=12,..,.M .. (3)
where(}) is the j"' periodogram point; A; = 2xj/T; T is the number of observations; P, is
constant; and v, is an error term, asymptotically i.i.d, across harmonic frequencies with zero
mean and variance known lo be equal ton’ /6. M = g(T) =T*with0<p <1 is the number
of Fourier frequencies included in the spectral regression and is an increasing function of T.
As argued by GPH the inclusion of improper periodogram ordinates M, causes bias in the
regression which results in an imprecise value of d. To achieve the optimal choice of T,
several choices need (o be established in terms of the bandwidth parameter M = T4, 195,
..., T*". The GPH fractional differencing test is performed on the stock return aiming at a
prospective gain in estimation efficiency. The fractional distinction test tends to find out
fractional constitution in a time series based on spectral investigation of its low-frequency

dynamics.
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4. Data Analysis and Findings

The series studied in this analysis include two stock indices, BSE SENSEX and NSE CNX
NIFTY at daily frequencies in India. The period of study is from April 1999 to March 2008.
The daily closing values of the individual indices were laken and daily index retumns were
calculated using the relation r(t)= In(p,.,)-In(p,) where r(t) is the return on the index on t-th
day, In{p,,,), In(p,) represents natural logarithm of index value on t+1 day and t-th day

respectively. We test for long memory on return, absolute return (mod value) and squared
return series from SENSEX and NIFTY.

4.1 Descriptive Statistics

The statistical summaries of logarithmic return, absolute retumn and squared return series of
both NIFTY and SENSEX are reported in Tablel below which shows that the sample means
of all series are positive. The retumns series of both the indices are negatively skewed and
leptokurtic. This along with high value of Jarque and Bera (1987) statistic clearly suggests
that return series of both the indices cannot be regarded as normally distributed. However,
both absolute return series and squared retum series are positively skewed and leptokurtic
indicating non normal distribution.

Table 1: Descriptive Statistics

NIFTY SENSEX
Return Absolute | Squared | Return | Absolute | Squared
return return return return
Mean 0.00065 0.01159 0.00026 0.00066 0.011633 0.000262
Median 0.00154 0.00852 0.00007 0.00147 0.008661 0.000075
Maximum 0.07969 0.13053 0.01704 0.07931 0.118092 0.013946
Minimum -0.13053 0 0] -0.11809 0.000013 0
Std. Dev. 0.01624 0.01139 0.00068 0.01618 0.011274 0.000628
Skewness -0.57131 2.53266 10.2081 | -0.49453 2.297102 8.152873
Kurtosis 7.81647 14.3644 187.717 6.8137 11.64986 123.3157
Jarque-Bera 2307.46 14577.6 3252277 | 1459.122 9017.121 1385724
Probability 0 0 0 0 0 0
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4.2 Unit Root Tests

The resulls of unit root tests are displayed in the Table 2 given below.

Table 2: Unit Root Tests

NIFTY SENSEX
Return Absolute | Squared Return | Absolute | Squared
return return return return
ADF -34.2977* -12.845* -17.63* -44.75* -12.527* -16.73*
PP -44.481* -36.427% -28.99* -44.75* -37.536* -31.27*
KPSS 0.204 0.3886 0.285 0.279 0.6998 0.497

a) The critical values are those of Mackinnon (1991).

b) * represent the rejection of null hypothesis at 1% level of significance.

The null hypothesis of presence of unit root in ADF test and PP test is rejected at 1% level of
significance for logarithmic return, absolute retumn and squared return series of both NIFTY
and SENSEX indicaling all the data series are stationary. The same is further confirmed by
KPSS test where the null hypothesis of stationary data series could not be rejected at 1% level
of significance for logarithmic return, absolute return and squared return series of both

NIFTY and SENSEX.
4.3 Visual Interpretation: Autocorrelation Function (ACF)

The Autocorrelation function was plotted against the time lag for logarithmic return, absolute
return and squared return series of both NIFTY and SENSEX. The lag was taken upto 40
days. The autocorrelation is found to decay quickly and is insignificant in the logarithmic
return series of both the indices (Fig. 1 and Fig. 2). However in case of absolute and squared

return series, a slow decay in autocorrelation is observed (Fig. 3, Fig. 4, Fig. 5 and Fig. 6).
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The ACF of the data series clearly indicates short memory in retums but long range

P orp for absolute and squared retum series in Indian stock market.

Figures of Autocorrelation Functions (ACF)
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4.4 R led-Range (R/S) Analysis: H: Mandelbrot’s Classical R/S Statistic and Lo Statistic

The results of Rescaled-Range (R/S) Analysis are presented in the Table 3 oblained below
where Hurst-Mandelbrot’s Classical R/S Statistic and Lo Statistic are displayed.

Table 3: Hurst-Mandelbrot's Classical R/S Statistic and Lo Statistic

NIFTY SENSEX
Return Absolute Squared Return Absolute | Squared
return return return return
Hurst-Mandclbrot's
E 4.58 352 1.61 519 4.13
Classical R/S Statistic 151
Lo Statistic 147 2.63 2,05 1.56 2.93 ' 244 J

Note: Critical values:

10% level of significance [0.861, 1.747]

5% level of significance (0.809, 1.862]

1% level of significance [0.721, 2.098)

The estimated value of Hurst-Mandelbrot’s Classical R/S Statistic suggests that the null
hypothesis of no lo ge dependence in case of return series of both NIFTY and SENSEX
could not be rejected at 1% level of significance as estimated value of the statistic falls within
the acceptance region. However, for both absolute and squared retumn, the null hypothesis is
rejected at 1% level of significance. The critical values of the statistic are obtained from Lo
(Table II, 1991). This clearly indicates that although logarithmic returns may not have long
memory, returns without signs as well as volatility as measured by squared retuns shows
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existence of longrun dependence in the series. Now since Classical R/S Statistic is sensitive to
short range dependence and may give biased results in the case of short-range dependence,

ities and ionary series, we also computed Lo’s statistic which takes care of these
shortcomings. The Lo statistic displayed in Table 4 also shows that the null hypothesis of no
long-range dependence in case of return series of both NIFTY and SENSEX could not be
rejected at 1% level of significance as estimated value of the statistic falls within the
acceplance region. For squared return, Lo statistic rejects the null hypothesis at 1% level of
significance for both NIFTY and SENSEX and in case of absolute retum series, the null of no
long range dependence is rejected for both NIFTY and SENSEX at 5% level and 1% level
respectively. The results of both the tests are consistent and indicate short memory for return
series and long memeory for volatility.

4.5 The Spectral Regression Method (GPH statistic)

Table 4: GPH estimate of fractional differencing parameter (d)

Fractional Differencing Parameter (d)
M NIFTY SENSEX
Return Absolute Squared Return Absolute Squared
return return return return
0.0514 0.4161* 0.2703* 0.0860 0.48110° 0.35473 *
L 10.1289] [0.1104] [0.0940) [0.1115) o.1112] [0.0986 )
(0.3992) (3.7678) (2.8746) (0.7714) (4.3250) (3.5979)
-0.058] 0.3911° 0.2759° 0.00509 0.43453 * 0.35572%
™ [0.0965] [0.0849] 10.07767) [0.1038) [0.0971) 10.0852]
(-0.6021) (4.607) (3.5529) (0.0491) (4.4751) (4.1749)
0.0318 03331 0.2626* 0.0510 033299 0.29501
s [0.08875] [0.0704] [0.0674) [0.0816) [0.07179] [0.06845)
(0.35%0) (4.7350) (3.8918) (0.6244) (4.683) (4.3680)
0.0416 0.3987° 0.2869* 0.05231 0.42224% 0.35173
Lo 10.0685) [0.06283] [0.0554) [0.0652) [0.06488] [0.06382]
(0.6073) (6.3462) (5.1792) (0.8022) (6.5084) (5.5113)
0.0272 0.3809" 0.2643° 0.06126 0.33885* 0.30920°
bl [0.0509) [0.05426) [0.0485) [0.0549) [0.05143) [0.05726)
(0.5338) (7.0202) (5.4499) (1.1157) (6.5883) (5.4003)
0.0069 03621 02544~ -0.0021 0.337t0" 0.29486*
facid [0.0459) [0.0459] [0.0418) {0.0435) [0.04125) [0.04503]
(0.1508) (7.8883) (6.0844) (-0.0483) (8.1718) (6.5485)

a) * represents the rejection of null hypothesis at 1% leve! of significance.
b) Standard errors in [ ] and t-statistics in ( ).

The above Table 4 reports estimates of the fractional differencing parameter (d} for the daily
logarithmic retum, absolute return and squared retumn series of both NIFTY and SENSEX.
The test examine the null hypothesis of short memory (Ho: d = 0) against long memory
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alternatives (H;: d > 0). As shown in table 5, the estimates of d are insignificant for a range of
bandwidth (M = T**%; T%; . T°% for the logarithmic return series of both the indices.
However, the estimates of the parameter d range from 0.4811 (o 0.2544 and are statistically
significant at 1% level to reject the null of short memory in the absolute and squared returns
of two Indian stock markets. These results indicate that a long memory property exists in the
volatility of two Indian stock markets. Moreover, findings support the Taylor effect, because
in general, the cstimate of the parameter is higher for the absolute returns than thal of squared
retumns. The evidence on the presence of long memory in absolute and squared retums is
similar (o that obtained in previous research from major capital markets.

5. Conclusion

According 10 the market efficiency hypothesis in its weak form, asset prices
incorporale all relevant information, rendering asset retumns unpredictable. When return
series exhibit long memory, they display significant autocorrelation belween distant
observations. Therefore, the series realizations are not independent over time and past retums
can help predict futures retums, thus violating the market efficiency hypothesis.
Exploring long memory property is appealing [for derivative market participants, risk
managers and asset allocation decisions makers, whose interest is lo reasonably forecast
stock markel mo . The study ined the evidence of long memory in the Indian
equity market. We computed Hurst-Mandelbrot's Classical R/S statistic, Lo’s statistic, semi
parametric GPH statistic 1o test the presence of long-memory in asset returns. All the tests are
consistent with long range dependence in the absolute return and squared return series.
Findings also support the Taylor effect as the estimate of the fractional differencing parameter
is higher for the absolule returns than that of squared retumns. However, we find no evidence
of long-term memory in historical Indian stock market returns indicating Indian equity retums
follow a random walk. Absence of long memory in return series of both the indices shows
there was no evidence against the weak form of market efficiency in stock returns. Also the
relevance of linear pricing models and statistical inferences about asset pricing models based
on standard testing procedures is not questionable in absence of long range dependence in
stock retums. Given the [inancial economic environment, settlement cycles, strong regulatory
authority like SEBI and market micro structure in Indian markel, a possible explanation for
absence of long memory in return series may be based on the grounds that Indian markets
may be informationally efficient, prices tend to reflect all publicly available information and
any new information is fully arbitraged away. An altemnative explanation was suggested by Lo
(1991) when he suggested that “.... we find little evidence of long-term memory in historical
U.S. stock market returns. If the source of serial correlation is lagged adjustment t0 new
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information, the absence of strong dependence in slock retums should not be surprising from
an economic standpoint, given the frequency with which financial asset markets clear. Surely
{inancial security prices must be immune to persistent informational asymmetries, especially
over longer time spans”. Presence of long memory in squared returns indicate volatility of
asset returns which can be modeled using retums from the recent as well as remote past and
hence derivative instruments can now be more efficiently priced.
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